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Abstract

Query auto completion is known to provide poor predictions of the user’s query when
her input prefix is very short (e.g., one or two characters). In this study we show that
context, such as the user’s recent queries, can be used to improve the prediction quality
considerably even for such short prefixes. We propose a context-sensitive query auto
completion algorithm, NearestCompletion, which outputs the completions of the user’s
input that are most similar to the context queries. To measure similarity, we represent
queries and contexts as high-dimensional term-weighted vectors and resort to cosine
similarity. The mapping from queries to vectors is done through a new query expansion
technique that we introduce, which expands a query by traversing the query recommen-
dation tree rooted at the query.

In order to evaluate our approach, we performed extensive experimentation over the
public AOL query log. We demonstrate that when the recent user’s queries are rele-
vant to the current query she is typing, then after typing a single character, Nearest-
Completion’s Mean Reciprocal Rank (MRR) is 48% higher relative to the MRR of the
standard MostPopularCompletion algorithm on average. When the context is irrelevant,
however, NearestCompletion’s MRR is essentially zero. To mitigate this problem, we
propose HybridCompletion, which is a hybrid of NearestCompletion with MostPopu-
larCompletion. HybridCompletion is shown to dominate both NearestCompletion and
MostPopularCompletion, achieving a total improvement of 31.5% in MRR relative to

MostPopularCompletion on average.
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Chapter 1

Introduction

Query auto completion (QAC) [6, 58, 27, 5] is one of the most visible features in Web
Search today. It is offered by all major search engines and in almost all their search boxes.
Query auto completion helps the user formulate her query, while she is typing it. Its main
purpose is to predict the user’s intended query and thereby save her keystrokes. With the
advent of instant as-you-type search results (a la the recently released Google Instant!),
the importance of correct query prediction is even more acute, because it determines the
speed at which the user sees the suitable results for her intended search and the amount
of irrelevant results that are displayed to her along the way.

The basic principle that underlies most query auto completion systems is the wisdom
of the crowds. The search engine suggests to the user the completions that have been
most popular among users in the past (we call this algorithm MostPopularCompletion).
For example, for the prefix am, Bing suggests amazon and american express as the top
completions, because these have been the most popular queries starting with am. As the
user is typing more characters, the space of possible completions narrows down, and
thus the prediction probability increases. For example, if the user is looking for american
presidents in Bing, after typing the 14 characters american presi the desired query becomes
the top completion.

Clearly, during the first few keystrokes the user is typing, the search engine has little

1h’ttp: / /www.google.com/instant/
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information about her real intent, and thus the suggested completions are likely to mis-
predict her query. In our experiments, conducted over the public AOL query log [42],
we found that after the first character, MostPopularCompletion’s average MRR is only

0.187.

The objective of this study is to tackle the most challenging query auto completion
scenario: after the user has entered only one character, try to predict the user’s query
reliably. Being able to predict the user’s query on her first character rather than, say,
on her 10-th character would not only save the user a few keystrokes, but would also
make the whole search experience more interactive, as the feedback cycle of (query —
results — query refinement) would be shortened significantly. In addition, cutting down
the search time for all users implies lower load on the search engine, which translates to

savings in machine resources and power.

But how can we overcome the inherent lack of information when the user has en-
tered only a few characters of her intended query? Our main observation is that the user
typically has some context, which can reveal more information about her intent. For ex-
ample, if just before entering the characters am the user searched for richard nickson, it
is more likely that the user is looking for american presidents than for amazon or american
airlines. Similarly, if the user was browsing a page about President Lincoln or reading
an article about american history. On the other hand, if the user has just tweeted about
a planned trip, american airlines might be the more probable query. Recent queries, re-
cently visited web pages, and recent tweets are examples of online activities that may
indicate the user’s intent and, if available, could be used by the search engine to bet-
ter predict the query even after a few keystrokes. This is called context-sensitive query
auto completion. While the idea is very intuitive and context has been used in other sce-
narios to disambiguate user intent (e.g., in search [33, 18] and in query recommenda-
tions [13, 24, 12, 9, 50]), there is almost no published work on its application to query

completion.

Of the many different possible user contexts, our focus in this study is on the user’s
recent queries (within the same session), as they are readily available to search engines.

Based on our empirical analysis of the AOL log, 49% of the searches are preceded by a



different search in the same session, and are thus amenable to context-sensitive query

completion.

One possible approach to use recent queries to improve query auto completion is to
generalize MostPopularCompletion to rely on the popularity of query sequences rather
than just the popularity of individual queries. Suppose the user’s previous query in the
same session is y and that the current user input (query prefix) is x. Then, the search
engine will suggest the completions of x that were most frequently searched for after y.
For example, if after the query richard nixon the most popular successive query starting
with am is american presidents, the search engine will suggest american presidents as its top
completion. This is in fact the main principle underlying most of the work on context-
sensitive query recommendations [13, 24, 12, 9, 50]. The main caveat of this approach
is that it heavily relies on the existence of reoccurring query sequences in search logs.
Nevertheless, due to the long-tail distribution of query frequencies, many of the query
sequences generated by users have never occurred before (by our estimate, 89% of the

query pairs are new).

Some studies tried to mitigate the sparsity of query sequences by clustering similar
query sequences together, based on features extracted from queries, like their topical
categories or their terms [13, 12]. Machine learning techniques, like HMMs, are then
used to predict the intended query, if the sequence of previous queries can be associated
with a cluster in the model. This approach is still challenged by long-tail contexts, i.e.,
when the most recent query (or queries) have rarely occurred in the log (by our estimates,
in 37% of the query pairs the former query has not occurred in the log before). In this
case, the sequence of previous queries may not be easily associated with a cluster in the
model. Moreover, none of these previous studies took the user input (prefix) into account

in the prediction, so their applicability to query auto completion is still unknown.

We take a different approach to tackle this problem. Our algorithm relies on the fol-
lowing similarity assumption: when the context is relevant to the intended user query,
the intended query is likely to be similar to the context queries. The similarity may be syn-
tactic (e.g., american airlines — american airlines flight status) or only semantic (e.g., ameri-

can airlines — continental). By our estimates, 56% of the refinements are non-syntactic.
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Based on the similarity assumption, we propose the NearestCompletion algorithm,
which works as follows: given a user input x and a context y, the algorithm suggests to
the user the completions of x that are most similar to y. Choosing the suitable similarity
measure is non-trivial, though, because we would like it to be both correlated with refor-
mulation likelihood (that is, the more similar two queries A and B are the more likely they
are to be reformulations of each other, and vice versa) and universally applicable (that is,
the similarity is meaningful for any pair of queries A and B). The former requirement
guarantees that the completions that are similar to the context are indeed more likely to
be the user’s intended query. The latter requirement makes sure that the algorithm can

deal with any user input.

The above two requirements make many of the state-of-the-art query similarity mea-
sures less appealing for this problem. For example, syntactic measures, like edit distance,
do not take all reformulation types into account. Similarity measures that are based on
co-occurrence in search sessions [61, 19], on co-clicks [2, 13], or on user search behav-
ioral models [9, 41, 12, 50], are not universally applicable to all query pairs due to their
low coverage of queries, as long tail queries are rare in the query log. Similarity mea-
sures that are based on search result similarity [11] are not necessarily correlated with

reformulation likelihood.

Given a context, query recommendation algorithms [2, 61, 50] output a list of recom-
mendations that are likely reformulations of the previous query. So a possible similarity
measure would be one that associates each query with its recommendations. The main
caveat with this approach is that query recommendation algorithms are frequently de-
signed to output only a few high quality recommendations and thus it is plausible that
none of them are compatible with the user’s input. Hence, this technique is not univer-

sally applicable.

We propose a new method of measuring query similarity, which expands on the latter
recommendations based approach, but is universally applicable and is thus more suit-
able to query completion. Similarly to the result-based similarity of Broder et al. [11], we
expand each query to a richer representation as a high-dimensional feature vector and

then measure cosine similarity between the expanded representations. The main nov-
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elty in our approach is that the rich representation of a query is constructed not from
its search results, but rather from its recommendation tree. That is, we expand the query
by iteratively applying a black box query recommendation algorithm on the query, on
its recommendations, on their recommendations, and so on. The nodes of the traversed
tree of recommendations are tokenized, stemmed, and split into n-grams. These n-grams
are the features of the expanded representation vector and the weight of each n-gram is

computed based on its frequency and depth in the tree.

The above representation has two appealing properties. First, as the basic building
block in the construction is a black-box query recommendation algorithm, we can lever-
age any state-of-the-art algorithm and inherit its power in predicting query reformula-
tions. Second, the above scheme provides a continuous spectrum of exceedingly rich
representations, depending on the depth of the tree traversed. For example, a depth-0
traversal results in the n-grams of the root query itself, while a depth-2 traversal re-
sults in the n-grams of the query, its recommendations, and their recommendations. The
main point is that the feature space remains the same, regardless of the traversal depth.
So even if we cannot traverse the recommendation tree of a certain query (e.g., because
it’s a long-tail query for which there are no recommendations available), the similarity
between its representation and the richer representation of other queries is meaningful.
This property ensures that our query auto completion algorithm is applicable even for

long-tail contexts that have never been observed in the log before.

Our empirical analysis shows that the average MRR of NearestCompletion (with
depth-3 traversal) over queries whose context is relevant is 48% higher relative to the
average MRR of MostPopularCompletion over the same queries. However, when the
context is irrelevant to the intended query, NearestCompletion becomes destructive, so
its average MRR is 19% lower relative to the average MRR of MostPopularCompletion
over all queries. To mitigate this problem, our final algorithm, HybridCompletion, is a
hybrid of MostPopularCompletion and NearestCompletion. Each of the two algorithms
provides a list of top k matches. We aggregate the two lists by standardizing the contex-
tual score and the popularity score of each candidate completion and then computing a

final score which is a convex combination of the two scores. The completions are ranked
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by these final scores. We show that HybridCompletion dominates both NearestCom-
pletion and MostPopularCompletion. Its average MRR is 31.5% higher relative to the
average MRR of MostPopularCompletion.

As our new algorithm relies on the standard cosine similarity measure between vec-
tors, it can be implemented efficiently over standard high-performance search architec-
tures. This is a crucial property of the algorithm, because query auto completions need
to be provided to the user in a split-second as she is typing her query. Note that the rich
representation of the recent queries can be cached and retrieved quickly as the user is

typing her current query. The current query requires no enrichment.



Chapter 2

Related Work

2.1 Overview

The following section surveys art that relates to different aspects of this study. We walk
through query assistance techniques, namely query auto-completion and query recom-
mendations. In particular, we review context-sensitive query assistance algorithms. As
context has been studied in other Information Retrieval (IR) domains, we expand our
review to contextual IR in general. Last, we review related art on query similarity and

query expansion.

2.2 Query Assistance

Search engine users form natural language queries for the purpose of expressing their
information need. Query formulation is thus a crucial step in the search process, as it
directly effects the returned search results and therefore the user’s search experience.
Modern search engines assist users at the query formulation stage, by suggesting to the
user a list of queries to choose from. Two major query assistance methods exist in the
literature: query auto-completion and query recommendations. Despite the similar output,
the two methods defer in their input and objective. The main objective of query auto-

completion is to predict the user’s query while she types it. The input is an incomplete
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query, thus the user’s intent is highly vague or even unknown. In contrast, in query
recommendations, the input is a full user query that has just been typed. The main
objective of query recommendations is to suggest alternative queries, also named query
re-formulations. These recommendations assist the user to improve expressing her intent,

or explore additional information related to her query.

2.3 Query Auto-Completion

Query auto-completion has received relatively little attention in the literature. Several
methods have been proposed for completing user queries, differing in various aspects
such as the target application, the type of the data being searched, the data-source used

for extracting completions, the output format and the ranking method used.

2.3.1 Corpus Based Query and Document Suggestion

Bast and Weber [6] suggest an algorithm and an efficient indexing infrastructure for sup-
porting query auto-completion. Given the user’s input, which is composed of complete
terms followed by a prefix of the next term, their algorithm suggests to the user term
completions. For example, if the user has typed ‘car d’, the algorithm will suggest terms
starting with ‘d’, such as “dealer’ or ‘driver’. These will imply the queries ‘car dealer’ and
‘car driver’. The suggested term completions are extracted from documents containing
the user’s typed terms, ‘car’ in our example. In addition to suggesting completions of
the user’s prefix, Bast and Weber s algorithm outputs top document hits of the suggested
completions. Thus for example, if ‘car dealer’ was suggested as a completion, top hits of
the query ‘car dealer’ will be presented to the user. Bast and Weber propose to rank the
suggested completions, based on the scores of their corresponding hit documents. Their
intuition is that queries resulting in highly scored documents should be ranked higher,
since such queries are expected to be more useful to the user. Bast and Weber propose an
indexing data-structure implementation that is time and space efficient. The proposed
data-structure efficiently supports auto-completion while the user types her query, while

requiring no additional space over a state-of-the-art indexing infrastructure.
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2.3.2 Fuzzy Query Auto-Completion Over Structured Data

Ji et al. [27] explored an interactive and fuzzy search paradigm, focusing on searching
over structured records containing textual information. While the user types her query,
the proposed algorithm auto-completes query terms and displays matching data records.
The search is fuzzy in the sense that returned records may contain text that is similar
enough to query terms, not necessarily an exact match. For example, if the user types
‘professor smyt’, records containing ‘professor smyth’ are returned, as well as ones con-
taining “professor smith’. In this work, the user is not given completion suggestions
to choose from, rather, gets the final results with query prefixes highlighted. In terms
of ranking, the authors propose a ranking mechanism that is based on the following
factors: (1) similarity between the predicted keyword and the input prefix (2) query in-
dependent keywords weight such as Inverse Document Frequency (IDF) (3) query inde-

pendent record weight.

Jiet al. observe the crucial aspect of performance in auto-complete, as queries need

to be processed for every keystroke. Thus they propose a highly efficient algorithm.

2.3.3 Probabilistic Corpus Based Query Auto-Completion

Bhatia et al. [8] propose a probabilistic method for generating query auto-completions
from a given corpus. At a pre-processing stage, they create a repository of phrases by
extracting N-grams from the corpus. At run-time, the algorithm’s gets as an input the
user’s typed incomplete query. The algorithm’s task is to suggest phrase completions
that have a high probability to be eventually typed by the user. The proposed model
estimates the desired probability by estimating two probabilities: (1) the probability that
some phrase will be typed by the user, given the prefix that user is still typing, i.e. the last
query term (2) the correlation between a phrase and the user’s query, i.e. all preceding

query terms.
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2.3.4 Thesaurus Based Query Auto-Completion for Mobile Search

Arias et al. [1] propose a query auto-completion algorithm for mobile search. Their
method is semantic, rather than syntactic and is additionally context-sensitive. Their
completions are thesaurus-based concepts whose relatedness to the user’s context is de-
termined by a rule-based mechanism. This approach does not seem to fit the scalabil-
ity requirements of web search. In comparison, we suggest a scalable algorithm that is
based on query log data. Our algorithm is able to efficiently suggest completions given

any user context, including rare contexts that have never occurred in the log before.

2.3.5 Context Sensitive Query Auto-Completion Based on Query Logs

Christian and Gertz [51] propose a context-sensitive query auto-completion algorithm,
where completion candidates are extracted from the query log. The authors propose
to model the probability that a completion is relevant to the user, based on the user’s
prefix as well as her contextual information. They demonstrate context-sensitive query
auto-completion for time and location contextual information. Our algorithm addresses
different contextual information, namely, recent queries based context. Applying recent
queries based context in auto-complete, poses non trivial challenges that are not tackled
by Christian and Gertz work. Examples are identifying completions relevant to the re-
cent queries, ranking completions, coping with rare context and with irrelevant context.

In comparison, our work tries to address those challenges.

24 Query Recommendations

Similarly to query auto-completion, query recommendations assist users in phrasing
their intent. Numerous query recommendation algorithms have been introduced, re-
lying on varied techniques, including topic clustering [2, 7], query co-occurrence analy-
sis [19], session analysis [61, 24, 12], and user search behavioral models [41, 50, 9, 56]. As
our context-sensitive query auto-completion algorithm is based on similarity between

queries, we will elaborate on two query recommendation algorithms, which are based
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on recommending similar queries.

24.1 Cluster Based Query Recommendations

Baeza-Yates et al. [2] query recommendation algorithm is based on suggesting queries
that semantically relate to the user’s query. Query log based queries form the repository
of candidate query recommendations. A query is represented as a weighted vector of
terms, where the terms are extracted from the query’s clicked documents. Term weights
are based on a variant of TF-IDF, which takes into account document click frequency,
in addition to the standard term frequencies information. At a pre-processing stage,
queries are clustered into groups of similar queries, based on the proposed similarity
measure. Queries within a cluster are ranked by the support of the query, which measures
how relevant a query is within the cluster, based on click-through information. Upon
runtime, given a user’s input query g, the algorithm locates the cluster C that g belongs
to. It then suggests queries from C ranked by their support, as well as by their similarity
tog.

Similarly to Baeza-Yates et al. [2], Beeferman and Berger [7] cluster query log queries
into groups of similar queries, later used for query recommendations. Their clustering
algorithm is based on the query log bipartite graph of queries and their associated clicked
documents. The principal difference from Baeza-Yates et al. method is that Beeferman
and Berger’s algorithm is (as they phrase) ‘content-ignorant’. L.e., the algorithm makes
no use of the content of the documents or queries, rather is based on query-click rela-
tions only. The similarity between two queries is measured by the overlap between their
associated sets of clicked documents. The intuition is that queries which share a large
fraction of common clicked documents are ones that express a similar information need.

Thus clusters of queries represent different ways or reformulating a similar intent.

2.4.2 Context-Sensitive Query Recommendations

Several context-sensitive query recommendation algorithms have been proposed in the

literature. Boldi et al. [9] compute query recommendations by running Personalized PageR-
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ank (PPR) on their Query Flow Graph (QFG). As the mass of PageRank’s teleportation vec-
tor is concentrated on the context queries, the recommendations generated are context-
sensitive. The run time efficiency of this algorithm is questionable, as PageRank com-
putation is heavy. Cao et al. [13, 12] and He et al. [24] train models for query sequences
based on analysis of such sequences in search logs. They use, among others, some ma-
chine learning models, like Variable Length Hidden Markov Model (HMM) and Mixture
Variable Memory Markov Model. At run time, these models are used to predict the next
user’s query from her previous queries.

It is not totally clear how these techniques deal with long-tail contexts that have never
occurred in the log before. In comparison, our algorithms are adapted to query auto-
completion, can deal with long tail contexts, have scalable runtime performance, and are

robust to irrelevant contexts.

2.5 Contextual IR

Contextual IR has been identified as one of the important and central challenges in the
area [16]. It has been observed that considering the user’s current query solely is not
sufficient, as user queries are short and ambiguous [16, 25, 34]. Additionally, different
users or even the same user, phrase different information needs using the same query or
syntactically similar queries [14, 4, 36]. Therefore, IR applications should leverage user’s
context in order to exploit additional information about the user’s information need and
thus improve effectiveness.

Previous work tackles the context sensitivity challenge by exploiting different con-
textual resources, and proposing a variety of context models. The different approaches
differ in the methods they use for leveraging the context, and in the IR applications they

apply their methods to.

2.5.1 Context Type

Two categories of user context are addressed in the literature: long-term context and short-

term context [52]. Long-term context is based on global information about the user such
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as demographic, long-term search activity and user’s interests information. Short-term
context is based on the user’s recent search activity, e.g., the user’s recent queries and

clicks in the last 30 minutes.

2.5.2 Contextual Resources

A large variety of contextual resources are used in the literature for modeling the user
context. Examples are search queries [12, 9, 52], click-through information [52, 46], the
amount of time a user spent on a specific result page [59], browsing history [55, 40], and

the user’s current location and time [51].

2.5.3 Context-Sensitive Retrieval

The most explored application is contextual retrieval, having numerous papers, e.g.
[55, 52, 46, 33, 18, 43, 40, 44]. The objective of contextual retrieval is to exploit the user’s
context in order to personalize search results, and thus improve retrieval accuracy. A va-

riety of context modeling and personalization methods where proposed in the literature.

Interests Based User Model

One approach for personalizing retrieval is to create a user profile based on her general
interests. Interests are represented by categories extracted from a pre-defined taxon-
omy [26]. Users need to explicitly describe their categories of interests, or alternatively,
interests may be deduced implicitly, e.g. from the user’s query history [37]. Documents
are also mapped to categories, and thus search results are re-ranked according to the
user’s interests. For example, Personalized PageRank [26] computes a personalized Page
Rank Vector (PPV) for each set of documents belonging to some category. PPV’s and user

model of interests are used at query time for re-ranking search results.

User Model as a Weighted Vector of Terms

A second approach is to extract terms rather than high level categories from the user’s

context, and use those terms for re-ranking search results. Teevan et al. [55] model the
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user by a rich term index, which is based on the user’s personal content such as web
pages viewed, desktop documents and more. The authors propose to re-rank search re-
sults by assigning new weights to terms in the search formula, based on term occurrences
in the user’s content. Kraft et al. [33] represent the user context as a weighted vector of
terms, which may be obtained from textual resources such as the current page viewed.
They propose three different techniques for personalizing search results: (i) query rewrit-
ing - augmenting context terms to the original query; (ii) rank-biasing - giving boost to
context terms in retrieved documents; (iii) iterative filtering meta search - generating a set
of sub-queries from the query and context vector. Sub queries’ result lists are then com-

bined into the final retrieved documents list.

Machine Learning Based Personalization

A third approach proposes to exploit the user’s search context by applying learning to
rank methods. Radlinski and Joachims [46] coined the term query chain which they de-
fine as a sequence of queries that relates to a similar information need. In contrast to
learning methods that consider each query solely, they take advantage of query chains
in order to generate new preference judgment types. For example, a clicked document
for a query g is preferred over any result skipped in queries preceding g in the same
query chain. Thus, considering query chains implies deducing preference judgments of
many more documents. The authors demonstrate that their method outperforms static

ranking functions, as well as learning to rank methods that do not consider query chains.

2.5.4 User Search Behavior

User search behavior is a research area that relates to contextual IR. In order to effectively
exploit user’s context, it is beneficial to understand how users conduct search. An exten-
sive research exists on different aspects of users search behavior. Examples are studies
that explore the way users re-find information [54, 57]. Others try to predict the user’s
future search actions [35, 15], interests [31], and state, e.g., whether the user is satisfied

by search results [17, 22].
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2.5.5 Detecting Logical Sessions

When considering search history based context, an essential building block is the abil-
ity to segment user’s past sessions into logical sessions. Previous research tackles this
problem in different ways. He and Goker [21] proposed a method for detecting session
boundaries using a time interval threshold. Later, He ef al. [23] extended their time-based
method to additionally consider features of similarity between queries, which improves
the quality of session segmentation. Subsequent papers point out that users tend to
be multi-tasking within a particular session [38]. In addition, users tend to span their
search goals across multiple sessions [46, 10, 30, 32]. Different methods were proposed
for identifying logical sessions given the user’s search history. Several studies [46, 30, 32]
propose machine learning classifiers for detecting queries belonging to the same search
task. Lucchese et al. [38] propose a similarity measure between queries and clustering
methods for partitioning a given search session into multiple task-based sessions. Boldi
et al. [10] suggest the Query Flow Graph which is an aggregating model of all users’ search
sequences as reflected by the query log. The Query Flow Graph is used for computing

the most probable partitioning of a particular search history into logical sessions.

2.6 Query Similarity

A variety of query similarity measures exists in the literature. This includes trivial syn-
tactic similarity measures such as Jaccard distance, expansion techniques that overcome
query sparsity problem such as Roccio’s method [49], methods that exploit query log

information [2, 7, 41], and semantic relatedness techniques [48, 28, 53, 20, 45, 60, 47].

2.6.1 Query Expansion

Query expansion is a well established field (see [39] for an overview). Query expan-
sion techniques add terms such as synonyms, to the user’s original query, in order to
improve the way the query represents an information need. A classical application of

query expansion is improving search recall. Query expansion methods alter the user’s
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query under the hoods, and thus the user is not aware of the query modification.
Classical methods expand the query using thesauri. This is limited and non-scalable.
Roccio’s relevance feedback method [49] expands the query from terms that occur in
its search results. The algorithm (which was originally formulated in the vector space
model) alters the original query by forming a new vector that maximizes similarity with
relevant documents, while minimizing similarity with irrelevant documents. Le., a vec-
tor that optimally separates between relevant and irrelevant documents. In the vector
space model, the optimal query is formulated as the difference between the centroid of
the relevant documents, and the centroid of the irrelevant documents. In many cases,
only positive feedback is considered, and thus the centroid of relevant documents serves
as the expanded query. The set of documents used for expansion are ones retrieved as
a result of the query. These documents are manually marked as relevant or irrelevant,
and the expansion is done presumably in several iterations. In order to avoid the costly
manual intervention, pseudo relevance feedback [39] was proposed. The method automates
the manual tagging of documents relevancy by considering the top k results of the query

as the relevant set of documents.

2.6.2 Query Similarity Based on Query Log Analysis

Various methods rely on query log analysis for computing query similarity, e.g., [29, 2,
7,3, 9]. Baeza-Yates [3] proposes several ways to measure similarity between queries,
based on various data sources: (1) common terms (2) session co-occurrence (3) common
clicked URLs (4) links between clicked URLs (5) common terms in clicked document.
Many of existing approaches use variants of these data sources for computing query

similarity.

2.6.3 Semantic Relatedness

Semantic relatedness techniques aim to measure the level of similarity between two natu-
ral language texts. Various semantic relatedness techniques exist in the literature, e.g. [48,

28, 53, 20, 45, 60, 47]. Gabrilovich and Markovitch [20] propose Explicit Semantic Anal-
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ysis (ESA), which leverages human knowledge that is maintained in Wikipedia. Their
core idea is to map text into a high-dimensional space, where features are Wikipedia
based concepts. Text is thus modeled as a weighted vector of concepts that represent
the meaning behind the text. Similarity is measured using standard metrics such as the
cosine similarity. Semantic relatedness techniques that accept multi-term texts as an in-
put (such as ESA), may be used for measuring the semantic similarity between search

queries.
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Chapter 3
Most Popular Completion

3.1 Query Auto-Completion Definition

A query auto completion (QAC) algorithm accepts a user input x, which is a sequence of
characters typed by the user in the search engine’s search box. The user input is typically
a prefix of a complete query g that the user intends to enter. The algorithm returns a list

of k completions, which are suggestions for queries, from which the user can select.

3.2 Hit Definition

A completion c is said to be a hit, if it equals the query g that the user was about to enter.
In this work we will focus on hits as the main measure of success for QAC algorithms,
as it is relatively easy to estimate hit rates when inspecting search logs. In reality, a QAC
algorithm may be successful even if it returns a completion that is different from the

query the user was about to type but that describes the same information need.

3.3 Query auto-Completion Framework

Most QAC algorithms share the following framework. In an offline phase a query database

is built. The database consists of a large collection of queries that are of high qual-
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ity and represent the intents of the search engine’s users. Major search engines build
this database from their query logs by extracting the most frequently searched queries.
Smaller search engines, which do not have sufficient user traffic, construct the database

from prominent phrases that occur in the corpus being searched.

3.4 Completion Criteria

Each QAC algorithm defines its own criteria for determining whether a query g is an
eligible completion for an input x. Traditional QAC algorithms require that g is a proper
string completion of x (i.e., that x is a prefix of g). For instance, barack obama is a proper
completion of the input bar. Advanced QAC algorithms support also non-proper com-
pletions, like mid-string completions (e.g., ob — barack obama) and spell corrections (e.g.,
barak — barack obama). We will denote the set of queries that are eligible completions of

an input x by completions(x).

3.5 Completion Ordering

At run-time, the QAC algorithm accepts an input x, and selects the top k eligible com-
pletions for x. Completions are ordered by a quality score, which represents how likely
each completion is to be a hit. Since the algorithm needs to provide the user with the
suggested completions as she is typing the query, it has to be ultra-efficient. To achieve
this high performance, the algorithm needs a data structure, like a TRIE or a hash table,

that supports fast lookups into the query database using prefix keys.

3.6 MostPopularCompletion Definition

MostPopularCompletion (MPC) is the standard and most popular QAC algorithm. The
quality score it assigns to each query g is the relative frequency of this query in the log
from which the query database was built. That is, for an input x, MostPopularComple-

tion returns the k completions of x that were searched for most frequently.
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More formally, let p(q) denote the probability distribution of incoming queries; we
assume that p(q) is identical for all users. Let p(q|x) denote the probability that the user’s
intended query is g, given her typed input x. MostPopularCompletion ranks completion
queries by p(g|x), such that the most likely completion is returned at the top rank.

In order to rank completions by p(g|x), we first apply Bayes Rule and express p(g|x)

as:

p(qlx) =

p(x|q) denotes the probability that the user will type x, given that she has query g in

mind. For simplicity, we pose the following assumptions:

1. Users type queries by starting from the beginning of the query. Thus, x is a prefix

of g, rather than any sub-string.

2. Users type the exact characters of 4. In particular, we don’t consider errors while

typing.

3. Auto-complete does not affect users. This implies that a user will fully type g, even

if g was suggested to her while typing.

Under the above assumptions we get:

1 iff x is an exact prefix of g
p(xlq) =
0 otherwise

As x is given, p(x) is constant over all queries q. Consequently, p(x) does not affect

the ranking and may be ignored. Thus, we end up with:

(al) .k | P(q) iff x is an exact prefix of g
plqix) =
0 otherwise

Note however, that in the more general case, p(g|x) rank p(x|q) - p(q). This requires

estimating p(x|q), which we don’t cover in the current research.



28 Chapter 3. Most Popular Completion

MPC applies Maximum Likelihood Estimation (MLE) for estimating p(g). Recall that we
assumed p(q) is identical for all users, and thus may be estimated by the aggregation of
all observed queries. Thus, p(g) is estimated by the relative frequency of g in the query
log:

Al __ freq(q)
p(q) = pmre(q) T crog freq(@)

Finally, we get:

freq(q)

rank W iff x is an exact prefix of q

p(qlx)
0 otherwise



Chapter 4

Nearest Completion

As we will see in Section 6, MostPopularCompletion frequently fails to produce hits
when the user input is still very short (say, 1-2 characters long). The NearestCompletion
(NC) algorithm that we introduce next uses the user’s recent queries as context of the
user input x. When the context is relevant to the query the user is typing, the algorithm

has better chances of producing a hit.

4.1 Search Sessions

A logical search session is an interactive process in which the user (re-)formulates queries
while searching for documents satisfying a particular information need. It consists of a
sequence of queries 41, ...,4; (t > 1) issued by the user. The context of a user input x,
where x is the prefix of some query g; in the session, is the sequence of queries g1, . .., g;—1
preceding g;. Note that if x is the prefix of the first query in the session, its context is
empty.

Since all the queries in a logical session pertain to the same information need, the
context of a user input is always relevant to this input by definition. In reality, how-
ever, detecting logical sessions is non-trivial as a user may switch her information need
within a short time frame. Mis-detection of logical search sessions leads to mis-detection

of contexts. In this section we ignore this problem and assume we have a perfect ses-
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sion detector, so contexts are always relevant. We will address this problem in the next

section.

The reader may wonder at this point how a QAC algorithm that runs on the search
engine’s server can access the user’s recent queries at run-time. The most straightfor-
ward solution is to keep the user’s recent queries in a cookie, if the user agrees to it.
Every time the user performs a search, the search engine returns the results and also
updates a cookie (that the browser stores on the user’s machine) with the latest search.
When the user types characters in the search engine’s search box, the browser sends the

user’s input along with the cookie to the search engine.

4.2 The Basic Algorithm

A context-sensitive QAC algorithm takes into account the user’s context, when estimat-
ing the probability of her intended query. More formally, let p(g|x, C) denote the condi-
tional probability that the next query is g, given the prefix x and the current context C.

Similarly to MostPopularCompletion, we apply Bayes Rule and get:

p(xlq,C) - p(qIC)
p(x|C)

p(qlx,C) =

We assume that the input x is independent of the context C, given the query q. That is,

p(x|g,C) = p(x[q). Thus:

v oy = P&l - pg|C)

As x and C are given, p(x|C) is constant over all queries g. Consequently, it may be

ignored for the purpose of ranking.

We pose the same assumptions regarding p(x|q), as we did in MostPopularComple-

tion and thus have:

1 iff x is an exact prefix of g
pxlq) =

0 otherwise
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Finally, we end up with:

(4], ) .k | P(q|C) iff x is an exact prefix of g
p(qlx,C) =
0 otherwise

Estimating p(gq|C) using MLE is problematic, because query logs are too sparse to
provide meaningful estimates for most (g, C) pairs. We tackle this problem by casting
it as an information retrieval (IR) problem: we treat the context C as a “query” and the
queries in the query database as “documents”. Indeed, our goal is to sift through the
many possible completions of x and find the ones that are most similar to the context C.

Looking at this problem through the IR prism, we can now resort to standard IR
techniques. We chose to implement NearestCompletion using the traditional Vector Space
Model (VSM), which is supported by the search library we used in our experiments. Each
context C is mapped to a term-weighted vector v¢ in some high dimensional space V.
Similarly, each query g in the query database is mapped to a vector vy € V. Nearest-

Completion then ranks the completions g of x, by the cosine similarity between v, and

Uc:
<Z)QI UC>

Similarity(q,C) = ————-
[[vg]] - [loc|
In other words, NearestCompletion outputs the k completions of x whose vectors are

most similar to vc¢.

4.3 Context Representation

Contexts and queries are objects of different types, so it may not be clear how to represent
both as vectors in the same space. However, since contexts are sequences of queries,
then we can produce context representations from query representations. Formally, if
C=4q1,...,qtisa context and vy, ..., vy, are the corresponding vectors, we produce the

context vector vc as a linear combination of the query vectors:

t
bc = Z Wivyg;-
i=1
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The weights wy, ..., w; are non-negative. They specify the relative contribution of each
context query to the context vector. As the more recent a context query is, the more
likely it is to be relevant to the current query, the weights need to be monotonically non-
decreasing. In our empirical analysis we experimented with different weight functions:
recent-query-only (wy = 1 and w; = 0 for all i < t), linear decay (w; = 1/(t —i+ 1)),

logarithmic decay (w; = 1/(1+ In(t —i + 1))), and exponential decay (w; = 1/¢'~)).

4.4 Vector Representation via Query Expansion

The most important ingredient of the NearestCompletion algorithm is the representa-
tion of queries as term-weighted vectors. This representation eventually determines how
NearestCompletion ranks the completions of x. Ideally, we need this ranking to be con-
sistent with the ranking of completions by the conditional probabilities p(q|C). Note that
p(q|C) is the probability that the user reformulates the context queries C to the current
query q. Hence, the vector representation of queries needs to yield a similarity measure

so that similar queries are likely reformulations of each other and vice versa.

A naive approach would be to represent a query by its terms, as a bag of words. The
resulting similarity measure can capture syntactic reformulations, such as my baby is not
eating well — baby eating disorder, but not semantic refinements, like baby eating disorder
— infant nutrition. The problem is that queries are short, and thus their vocabulary is too

sparse to capture semantic relationships.

In order to overcome this sparsity problem, we expand each query into a rich repre-
sentation. Query expansion [39] is used to augment the textual query with related terms,
like synonyms. For example, the query baby eating disorder may be expanded to baby in-
fant eating food nutrition disorder illness and the query infant nutrition may be expanded to

infant baby nutrition food. The two expanded forms now have high cosine similarity.
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4.5 Recommendation Based Query Expansion

We introduce a new query expansion technique that leverages a large body of work on
query recommendation. A query recommendation algorithm suggests to the user high
quality reformulations of her query. Query recommendation algorithms rely on existing
query expansion techniques and in addition are tuned to provide likely reformulations
of the query. Hence, a plausible expansion of a query could be the list of recommen-
dations provided for it by such an algorithm. The advantage is that the added terms
are high precision keywords that appear in likely reformulations of the query. It follows
that two queries that have similar expanded forms of this sort share their reformulation
vocabulary and are thus more likely to be reformulations of each other.

The above approach produces high precision query expansions, but may lack cover-
age. If the query recommendation algorithm produces a small number of recommenda-
tions for each query (as most such algorithms do), then the resulting expanded forms
would be too sparse. To overcome this problem, we expand each query not just by its di-
rect recommendations but rather by the whole recommendation tree rooted at this query.

Formally, let A be a query recommendation algorithm, and let us denote by A(g) the

top k recommendations that A provides for a query 4.

Definition 4.5.1 (Query Recommendation Tree) Let d > 0 be an integer. Let qud denote
the depth-d query recommendation tree of query q. The root node of T, 4 corresponds to the

query q. The children of each node v in the tree correspond to the recommendations for v (A(v)).

Note that the same query may occur multiple times in the tree and possibly at differ-
ent levels of the tree.

The query recommendation tree is the main building block in the construction of the
expanded form v, of a query gq. The coordinates of v, correspond to n-grams that occur
within the queries in the tree. n-grams are extracted as follows: each query in the tree
is tokenized into terms, stop-words are eliminated, and the terms are stemmed. The
resulting queries are split into overlapping n-grams, where n = 1,...,N and N is an
upper bound on the size of n-grams we care about.

Let z be an n-gram. If z was not extracted by the above process, then v,(z] = 0. If z
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was extracted, let T(z) denote the nodes of the tree that contain z. We define the weight

of zin vq as follows:

vlz] = | ), weight(depth(u)) | - In(IDF(2)).
ueT(z)
This is essentially a TE-IDF weight. The sum counts the number of occurrences of z in the
tree, but it assigns different weights to different occurrences. The weight of an occurrence
depends on the depth of the node in which it is found. Note that the deeper the node
is, the weaker is its connection to the root query g, and hence the function weight(-)
is monotonically non-increasing. We experimented with various weighting functions,
including linear decay, logarithmic decay, and exponential decay. IDF(z) is the inverse

frequency of z in the entire query database.

4.6 System Architecture

Since NearestCompletion relies on the Vector Space Model, it can leverage standard and
optimized information retrieval architectures. In the offline phase, the algorithm com-
putes the rich representation of each query in the query database. The resulting vectors
are indexed in an inverted index. In addition, each query is indexed by its set of eligible
prefixes, so one can retrieve all completions of a given prefix quickly (note that wildcard
operator that is supported by standard search architectures can also be used for prefix-
based retrieval).

In run time, the algorithm accepts the user input x and the context C. The rich rep-
resentation of the queries that constitute C should be available in a cache, because these
queries have been recently processed by the search engine. The algorithm can therefore
compute the rich representation v¢ of C. It then retrieves from the index the queries that
are completions of x and whose rich representation is most similar to vc.

Note that a similar architecture was proposed by Broder ef al. [11] to expand long-tail

queries for the purpose of matching relevant ads.
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Hybrid Completion

5.1 Motivation

NearestCompletion is designed to work well when the user input has a non-empty con-
text and this context is relevant to the query that the user is typing. In practice, however,
many queries have no context (51% by our experiments). In addition, due to incorrect
segmentation of search sessions, recent queries that are deemed as context may not be
relevant to the current query at all (by our experiments, 40% of the query pairs have
different information needs). In all of these cases NearestCompletion relies either on no

information or on false information and thus exhibits poor quality.

On the other hand, the standard MostPopularCompletion algorithm is not dependent
on context, and thus can do well even if the context is empty or irrelevant. It would have
been nice if one could identify these cases and use MostPopularCompletion instead of
NearestCompletion in them. Recognizing that the context is empty is easy. However,
how can one detect that the context is irrelevant, at run time? HybridCompletion cir-

cumvents this problem by using both algorithms when the context is non-empty.
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5.2 HybridCompletion Definition

Given a user input x and a context C, HybridCompletion (HC) produces two ranked lists
of completions of x: Ly¢ consists of the top ¢ completions returned by NearestComple-
tion and Lypc consists of the top ¢ completions returned by MostPopularCompletion.
The final ranked list of completions L is constructed by aggregating the two lists.
The results in each of the two lists are ranked by quality scores: Ly is ranked by
a similarity score, which we denote by simscore(-), and Lypc is ranked by a popular-
ity score, which we denote by popscore(-). The aggregated list Ly is constructed by
combining the two scoring functions into a single hybrid score, denote hybscore(-). As
simscore and popscore use different units and scales, they need to be standardized before
they can be combined. In order to standardize simscore, we estimate the mean similar-
ity score and the standard deviation of similarity scores in the list Lyc. The standard

similarity score is then calculated as

Zsimscore(q) = %/

where y and ¢ are the estimated mean and standard deviation. The standard popularity
score is calculated similarly. The hybrid score is defined as a convex combination of the
two scores:

hybscore(q) = a - Zsimscore(q) + (1 — «) - Zpopscore(q)

where 0 < a < 1is a tunable parameter determining the weight of the similarity score
relative to the weight of the popularity score.

Returning to the probabilistic formalization of NearestCompletion and MostPopu-
larCompletion, HybridCompletion may be formalized as an estimation of p(g|x, C). Hy-

bridCompletion is thus defined as the following convex combination of probabilities:

. def
p(q1x,C) = prc(qlx,C) = - pnc(glx,C) + (1 —a) - pupc(q]x)

One can think of & as the prior probability that the next query has a relevant context

and thus would require a context-sensitive completion. Note that when & = 0 Hybrid-
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Completion is identical to MostPopularCompletion, and when &« = 1 HybridCompletion
is identical to NearestCompletion (except for inputs that have empty context).

In Section 6, we experiment with different values of « in order to tune it appropriately.

5.3 An Adaptive Combination Approach

HybridCompletion, as described above, uses one global value for a, which is common
to all inputs and contexts. There may be scenarios though where it is desired to alter
the value of a adaptively. For example, if we have some indication that the context
is not relevant to the current user input, we may want to reduce «, while if we have
the opposite indication, we may want to increase a. Since the focus of this work is not
on session segmentation and context relevancy detection, we have not addressed this

direction.

5.4 Re-ranking of Original Lists

It is important to note that HybridCompletion may re-rank the original lists of comple-
tions it receives. For example, among the most popular completions, it will promote
the ones that are more similar to the context, and, conversely, among the most similar
completions, it will promote the more popular ones. This implies that HybridComple-
tion can dominate both MostPopularCompletion and NearestCompletion not only on

average, but also on individual inputs.
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Empirical Study

Our empirical study has two goals: (a) compare the best configuration of our algorithms
to the standard MostPopularCompletion algorithm; and (b) study the effect of the differ-
ent parameters of our algorithms on the quality of the results. To this end, we came up
with an automatic evaluation methodology for QAC algorithms, which estimates their
MRR based on a given query log. We used the AOL query log [42] in our experiments,
as it is publicly available and sufficiently large to guarantee statistical significance (other

public query logs are either access-restricted or are small).

6.1 Experimental Setup

For performing the empirical study we implemented the standard MostPopularCom-
pletion algorithm and our two algorithms (NearestCompletion and HybridCompletion).
The query database used by all algorithms was constructed from the queries that appear
in the AOL log. We segmented the log into sessions, using a simple standard segmen-
tation heuristic (every interval of 30 minute idle time denotes a session boundary). We
eliminated from the data all click information and merged duplicate queries that belong
to the same session. The final data sets consisted of 21,092,882 queries in 10,738,766 ses-
sions. We found that 40% of the sessions were of length greater than 1 and 49% of the

queries were preceded by one or more queries in the same session (hence being amenable
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to context-sensitive QAC). Figures 6.1 and 6.2 demonstrate the session length distribu-

tion in the AOL log,.
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Figure 6.1: Session length distribution in the AOL log

We partitioned the AOL log into two parts: a training set, consisting of 80% of the log,
and a test set, consisting of the remaining 20%. We computed a rich representation (see
Section 4) for a subset of 55,422 of the training set queries. The query recommendation
trees required for these rich representations were built using Google Suggest’s query
auto-completion service. We scraped the auto completions using the public external
service (we did not rely on privileged access to internal Google services or data). Since
Google poses strict rate limits on scrapers, we did not compute rich query representation
for all the queries in the training set.

The query database used for training each of the 3 algorithms we considered con-
sisted of these 55,422 queries. The frequency counts used by MostPopularCompletion
were computed based on the entire training set, and not based only on the queries in the
query database.

NearestCompletion and HybridCompletion were implemented by customizing Lucene!

to our needs. The experiments were performed in October 2010 on a dual Intel Xeon

3.4GHz processor workstation with 4GB RAM and two 320GB disks.

1http: / /lucene.apache.org/java/docs/index.html
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Figure 6.2: Session length distribution in the AOL log; log log scale

6.2 Evaluation framework

We evaluate a QAC algorithm by how well it predicts the query the user is about to type.
The prediction quality depends on whether the algorithm succeeds to generate a hit, and

if it does, on the position of this hit.

Since all the algorithms we evaluate work the same when the current user input has
no context, then our evaluation focused only on queries that have context. We generated
sample queries with corresponding contexts as follows. We randomly sampled 40,000
sessions from the test set. For each selected session, we picked the first query among
the queries in the session that have context (i.e., they are not the first one in the session)
and that have a rich query representation (i.e., we scraped their recommendations/auto-
completions from Google). If the session had no such queries, it was dropped from the

sample. This resulted in 7,311 queries and contexts.

Our experiments focused on query auto-completion after having a single character

from the current query. This setting is the most challenging and thus demonstrates the
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differences among the different algorithms most crisply.

6.3 Evaluation Metric

Recall that for a particular query g and context C, an algorithm A is said to have a hit at
position ¢, if after receiving C and the first character of g, the algorithm returns g as the
¢-th completion for this character. We write in this case that hitrank(A,q,C) = ¢ (if A
has no hit at all, then hitrank(A, g, C) = o0). Mean Reciprocal Rank (MRR) is a standard
measure for evaluating retrieval that is aimed at a specific object. The reciprocal rank of
an algorithm A on a particular (query, context) pair (g, C) is 1/ hitrank(A, g, C) (note that
the reciprocal rank is 0 when the algorithm has no hit). MRR is the expected reciprocal
rank of the algorithm on a random (query, context) pair. To estimate MRR, we take a
random sample S of (query, context) pairs, and compute the mean reciprocal rank of the

algorithm over these pairs:

1
MRR(A) = ]

1

(q,CZ):eS hitrank(A4,4,C)"

MRR treats all (query, context) pairs equally. We observe, however, that some user
inputs are easier to complete than others. For example, if the user input is the letter
'z’, then since there are few words that start with z, the auto-completion task is easier
and is likely to produce better predictions. On the other hand, if the user input is the
letter ’s’, the numerous possible completions make the prediction task much harder. This
motivates us to work with a weighted version of MRR (denoted wMRR). Rather than
treating all (query, context) pairs uniformly, we weight them according to the number of

completions available for the prefix of the query.

6.4 Comparison Experiments

Our first set of experiments compare NearestCompletion and HybridCompletion to the

standard MostPopularCompletion. The comparison is based on the 7,311 random (query,
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context) pairs collected from our training set. We used in these experiments the param-
eter values that we found to be the most cost-effective: (a) recommendation algorithm:
Google’s auto-completion; (b) recommendation tree depth: 3; (c) depth weighting func-
tion: exponential decay; (d) unigram model; (e) used only the most recent query; (f) « in

HybridCompletion: 0.5. Table 6.1 summarizes the most cost-effective parameters.

Recommendation algorithm | Google’s auto-completions
Recommendation tree depth 3
Depth weighting function exponential decay
n-gram length 1
Context length 1
« used by HybridCompletion 0.5

Table 6.1: Most cost parameters-effective parameters of NearestCompletion and Hybrid-
Completion as found in the comparison experiments.

We start with an anecdotal comparison (Table 6.2) of the completions provided by the
three algorithms on some of the above pairs (note: these are real examples taken from
the AOL log). The first two examples demonstrate the effect of context on query auto
completion after the user has typed a single character of her intended query. In these
examples, the user’s intended query and the context are related (in the first example
they are syntactically related and in the second one they are only semantically related).
The NearestCompletion algorithm detects the similarity and thus provides the correct
prediction at one of the top 2 positions. As the intended queries in these cases are not
popular, MostPopularCompletion fails to hit the correct completion even in its top 10
suggestions. The utter failure of MostPopularCompletion has only a minor effect on
HybridCompletion, which suggests the correct completion at one of its top 5 positions.

The third example exhibits the opposite scenario: the context is irrelevant to the
user’s intended query and the intended query is popular. Consequently, MostPopu-
larCompletion hits the correct query at the top position, while NearestCompletion com-
pletely fails. This time HybridCompletion benefits from the success of MostPopular-

Completion and hits the correct completion also at its top spot.

Figure 6.3 provides a comparison of weighted MRR of the three algorithms on the

7,311 (query, context) pairs. We validated that the results are all statistically significant.
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Context Query MostPopularCompletion NearestCompletion HybridCompletion
french flag italian flag internet italian flag internet
im help itunes and french italian flag
irs ireland itunes and french
ikea italy im help
internet explorer irealand irs
neptune uranus ups uranus uranus
usps uranas uranas
united airlines university ups
usbank university of chicago united airlines
used cars ultrasound usps
improving acer laptop battery | bank of america bank of america battery powered ride ons bank of america
bankofamerica battery plus charlotte nc best buy
best buy battery died while driving battery powered ride ons
bed bath and beyond best buy bankofamerica
billing battery replacement for palm tungsten c | battery died while driving

Table 6.2: The top 5 completions provided by the 3 algorithms on (query, context) pairs taken from the AOL log. In the first two examples

the context and the query are related, while in the last one they are not.
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It is very clear that HybridCompletion dominates both NearestCompletion and Most-
PopularCompletion. For example, HybridCompletion’s wMRR is 0.246 compared to
only 0.187 of MostPopularCompletion (an improvement of 31.5%). It is also clear that
the quality of NearestCompletion is inferior to MostPopularCompletion (by 19.8%), so it
cannot be used as is for query auto completion. The graph also distinguishes between
pairs in which the context has a rich representation (i.e., the recommendations for this
context have been scraped from Google) and pairs in which the context has only a thin
representation (based on the context query itself, without the recommendations). Note
that the latter simulates the case the context is long-tail and the search engine has no
recommendations for it. The results indicate that even such long-tail contexts are useful,

and thus HybridCompletion is doing better than MostPopularCompletion.

0.3 [ |Nearest
0.3 I MostPopular |
0.246 e Hybrid
0.251 0.243 023 |
é 0.2 0.187 0.193
=
2 015} oo 0.138
0.1r
0.05F
0 :
All Rich Thin
Context Type

Figure 6.3: Weighted MRR of the 3 algorithms on 7,311 (query, context) pairs. Results
are for all pairs, for pairs in which the context has a rich representation, and for pairs in
which the context does not have a rich representation.

Figure 6.4 demonstrates that HybridCompletion dominates MostPopularCompletion
not only on average but also with high probability. In this graph we compare the (weighted)

fractions of (query,context) pairs on which the MRR values of one algorithm is higher
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than that of the other algorithm. Since small differences in MRR values are insignificant
(e.g., if one algorithm ranks the intended query at position 9 and the other at position 10,
the algorithms perform essentially the same on this query), we deem the two algorithms
to do equally well on some input pair if the difference in their MRR values on this pair
is at most €. Clearly, the lower the value of ¢, the tighter is the comparison.

After discarding input pairs on which the MRR of both algorithms was 0, we were
left with 3,894 pairs. Figure 6.4 demonstrates that for a wide range of € values, Hybrid-

Completion is superior to MostPopularCompletion on a larger fraction of input pairs.

0.8 T T T T T T T
e Equal MRRs

0.7 R MostPopular's MRR is higher
] Hybrid's MRR is higher

Weighted fraction of pairs
)
)

0 0.05 0.1 0.15 0.2 0.25 0.3
Epsilon values

Figure 6.4: Weighted fraction of (query,context) pairs where MostPopularCompletion’s
MRR value is higher than that of HybridCompletion in at least an epsilon and vice versa.

We drilled down the results in order to understand the relative strengths and weak-
nesses of the three algorithms on different inputs. To this end, we selected a random
sample of 198 (query, context) pairs from the set of 7,311 pairs, and manually tagged each
of them as related (i.e., the query is related to the context; 60% of the pairs) and unrelated
(40% of the pairs). Table 6.3 compares the quality of the three algorithms separately on

the related pairs and on the unrelated pairs. The results indicate that when the intended
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query is related to the context, NearestCompletion is very successful, achieving wMRR
that is 48% higher relative to MostPopularCompletion. HybridCompletion is even bet-
ter because it takes both the context and the popularity into account. On the other hand,
when the query and context are unrelated, NearestCompletion is essentially useless. Hy-
bridCompletion is even better than NearestCompletion for related pairs, while its quality

for unrelated pairs is moderately lower (in 20.3%) than that of MostPopularCompletion.

| | MostPopular [ Nearest | Hybrid |

Related context 0.163 0.242 0.280
Unrelated context 0.227 0 0.181

Table 6.3: Weighted MRR of the three algorithms, broken down by whether the intended
query and the context are related or not.

Next, we broke down the 7,311 sample pairs into buckets based on the frequency of
the intended query in the query log. The buckets correspond to exponentially increasing
frequency ranges. Figure 6.5 plots the wMRR of each algorithm in each of the buckets.
As expected, MostPopularCompletion is very successful at predicting popular queries.
It supersedes NearestCompletion for such queries, because its success is independent of
whether the context is related to the intended query or not. On the other hand, when
the intended query is long-tail (low popularity), NearestCompletion manages to use
the context to achieve a relatively high prediction quality, while MostPopularComple-
tion exhibits very poor quality. Note that HybridCompletion essentially takes the upper
envelope of the two algorithms, and manages to achieve almost as high quality in all

popularity ranges.

One peculiar artifact exhibited in this experiment is that the quality of NearestCom-
pletion slightly deteriorates for popular queries (whose frequency in the log is above
10,000). We analyzed these queries and found that the fraction of unrelated contexts
such queries have (58%) is much higher than the fraction of unrelated contexts for low
popularity queries (only 36.5%). This explains the lower quality of NearestCompletion

for such queries.
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Figure 6.5: Weighted MRR of the 3 algorithms as a function of the frequency of the in-
tended query in the query log (log-log scale).

6.5 Scalability Experiments

Our baseline query database for comparing NearestCompletion, MostPopularComple-
tion and HybridCompletion consisted of 55,422 rich queries. In practice, the query
database is expected to be much larger. When the query database size increases, there
are more query candidates to choose a completion from, which makes the prediction task
even more challenging. Therefore, we were interested to measure the scalability of our
algorithm as a function of the query database size.

We created a larger rich query database by scraping additional Google Auto-Completions,
and came up with 273,127 rich queries. We then compared the wMRR of the three algo-
rithms over the larger queries database as demonstrated in Figure 6.6. Note that we used
the same comparison method that we described in the previous section. We observed
that the relative improvement of HybridCompletion over MostPopularCompletion in-
creases when the query database size increases, and is 45.6 % compared to 31.5 % relative

improvement in the 55,422 query database. Figure 6.7 is a side by side comparison of the
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two database size experiments for all query pairs.
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Figure 6.6: Weighted MRR of the 3 algorithms on 273,127 (query, context) pairs. Results
are for all pairs, for pairs in which the context has a rich representation, and for pairs in
which the context does not have a rich representation.

It appears that the quality of both MostPopularCompletion and NearestCompletion
(and thus of HybridCompletion) degrades when the rich query database size increases.
We measured the relative quality degradation of the two algorithms and observed that
MostPopularCompletion’s quality degrades more significantly than that of NearestCom-
pletion: NearestCompletion’s WMRR decreases to 0.12, i.e. it relatively degrades in 20 %,
while MostPopularCompletion’s wMRR decreases to 0.1 and thus degrades in 46.5 %.

Another interesting outcome we observed is that in the 273,127 query database exper-
iment, NearestCompletion’s wMRR is higher than that of MostPopularCompletion. Re-
call that in the 55,422 query database experiment, MostPopularCompletion dominated
NearestCompletion.

All the above hints that in terms of quality, NearestCompletion scales better than
MostPopularCompletion does, when the size of the query database increases.

As in the smaller query database experiment, we created a graph of the wMRR as
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Figure 6.7: Weighted MRR of the 3 algorithms on a database consisting of 7,311 (query,
context) pairs vs. a database consisting of 273,127 (query, context) pairs.

a function of the intended query frequency. As shown in Figure 6.8, the overall behav-
ior pattern of the three algorithms is similar to what we observed in the smaller query

database.

6.6 Parameter Tuning Experiments

We conducted a set of experiments in which we examined the effect of the different pa-
rameters of our algorithms on their quality. Figure 6.9 shows the influence of the depth
of the query recommendation tree used in the construction of the rich query representa-
tion on the quality of NearestCompletion. We examined depths 0 to 3. As expected, the
quality of NearestCompletion increases, as the depth increases, since the vocabulary of
the rich representation is richer. Note that the returns are starting to diminish at depth
3. While we could not run the experiment with larger depths, due to Google’s scraping
limitations, we expect this trend to continue as the depth increases. Thus, a recommen-

dation tree of depth 2 or 3 seems to be the most cost-effective for this application.
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Figure 6.8: Larger (273,127) database experiment. Weighted MRR of the 3 algorithms as
a function of the frequency of the intended query in the query log (log-log scale)

Next, we measured the effect of the context length on the quality of NearestComple-
tion. Our experiments (see Table 6.4) demonstrate that increasing the number of recent
queries being taken into account slightly improves the quality of the algorithm, as the
vocabulary that describes the context is enriched. The effect is not as significant as the

recommendation tree depth, though.

Context length 1 2 3
wMRR 0.139 | 0.154 | 0.164

Table 6.4: Weighted MRR of NearestCompletion as a function of the context length. Re-
sults are for 2,374 (query, context) pairs in which the context was of length at least 3.

Table 6.5 shows the dependence of NearestCompletion’s quality on the query rec-
ommendation algorithm used to generate the recommendation trees. We compared two
algorithms: Google’s query auto-completions and Google’s related search. The results
demonstrate that the rich representations generated from Google’s related searches are

more effective (quality improves in 12.4%). Nevertheless, in most of our experiments
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Figure 6.9: Weighted MRR of NearestCompletion as a function of the recommendation
tree depth. Results are for all sample (query, context) pairs, for the ones in which the
context has a rich representation, and for the ones in which the context does not have a
rich representation.

we opted to use Google’s query auto completions, because the difference is not huge
and since they are much easier to scrape (the query latency is lower and the rate lim-
its posed by Google are higher). We thus conclude that the auto completions are more

cost-effective for this purpose.

Auto-completions | Related searches
wMRR 0.177 0.199

Table 6.5: Weighted MRR of NearestCompletion using two different query recommen-
dation algorithms (by Google) for generating recommendation trees of depth 2. Results
are only for (query, context) pairs in which the context has a rich representation.

The parameter @ in HybridCompletion controls the balance between NearestCom-
pletion and MostPopularCompletion. Recall that for « = 1 HybridCompletion is the
same as NearestCompletion and for « = 0 it is the same as MostPopularCompletion.

Figure 6.10 analyzes the effect of « on the quality of the algorithm. As noted above,
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MostPopularCompletion is better than NearestCompletion when the intended query is
popular and NearestCompletion is better when the context query is related to the in-

tended query. The results show that « = 0.5 is the best choice in aggregate.

1 — — —

wWMRR

Frequency

Figure 6.10: Weighted MRR of HybridCompletion as a function of « (log-log scale).

We measured the influence of other parameters of the algorithm, like the choice of
the depth weighting function, the choice of the context weighting function and the N-
grams maximum length. We have not found significant differences in quality among the

different alternatives.
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Chapter 7

Discussion and Conclusions

In this work we proposed the first context-sensitive algorithm for query auto-completion.
The algorithm, NearestCompletion, suggests to the user completions of her input pre-
fix that are most similar to the recent queries the user has just entered. We show that
when the input prefix is short (1 character) and the context is relevant to the user’s in-
tended query, then the weighted MRR of NearestCompletion is 48% higher than that of
the standard MostPopularCompletion algorithm. On the other hand, when the context
is irrelevant, NearestCompletion is useless. We then propose HybridCompletion, which
is a convex combination of NearestCompletion and MostPopularCompletion. Hybrid-
Completion is shown to be at least as good as NearestCompletion when the context is
relevant and almost as good as MostPopularCompletion when the context is irrelevant.

NearestCompletion computes the similarity between queries as the cosine similarity
between their rich representations. To produce rich query representation we introduce
a new query expansion technique, based on traversal of the query recommendation tree
rooted at the query. This technique may be of independent interest for other applications
of query expansion.

There are a number of possible interesting directions for further development of our
techniques. (a) The choice of the optimal « value of HybridCompletion may be done
adaptively. An algorithm which learns an optimal « as a function of the context features

is likely to improve the quality of the combination. (b) Predicting the first query in a
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session still remains an open problem. Here one may need to rely on other contextual
signals, like the user’s recently visited page or the user’s long-term search history. (c)
We introduce a novel method for query expansion based on the query recommendation
tree. It will be of interest to compare between the quality of our suggested technique and
the quality of standard query expansion techniques. Such a comparison may be done
in the scope of context-sensitive query auto-completion, as well as in other relevant IR

tasks such as document search.
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