
Context-Aware Query Suggestion

Research Thesis

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Science

Naama Kraus

Submitted to the Senate of the Technion - Israel Institute of Technology

Iyar 5772 Haifa April 2012

.

The research thesis was done under the supervision of Dr. Ziv Bar-Yossef and

Prof. Shaul Markovitch in the Faculty of Computer Science

The generous financial help of the Technion is gratefully acknowledged

Acknowledgment

I would like to sincerely thank the many people who made this research possible.

• I wish to express my deep gratitude to my supervisor, Dr. Ziv Bar-Yossef, for the

guidance, partnership, support and encouragement. Thanks for the many things

I’ve learned while working on this research. I highly appreciate the ability to bal-

ance between guiding me, and giving me the freedom to explore.

• I am grateful to Prof. Shaul Markovitch for co-advising, and his contribution to this

research.

• I wish to thank Dr. Oren Kurland for the interest in the research and the useful

review.

• I would like to thank my friends at the Technion, for warm words and beneficial

discussions.

• My deep thanks to my parents, Sara and Melech Westreich, for their continuous

support and encouragement. Thanks for teaching me to strive for knowledge and

wisdom.

• I wish to thank my parents in law, Leah and Jehoshua Kraus, for the kind support.

I am grateful for the assistance, which enabled me to invest time and resources in

my research.

• To my beloved children, Mattan, Noa and Yuval, who gave me the light and hap-

piness in a way that only children can.

• I am deeply grateful to my husband, Shraga, for accompanying me along the way,

and for believing me even more than I believed in myself. Thanks also for the

technical assistance in various aspects of this research.

.

List of Publications

1. Ziv Bar-Yossef and Naama Kraus, “Context-sensitive query auto-completion”, Pro-

ceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 107-

116, March 2011.

.

Table of Contents

Abstract 1

List of Acronyms 3

List of Symbols 5

1 Introduction 7

2 Related Work 13

2.1 Overview . 13

2.2 Query Assistance . 13

2.3 Query Auto-Completion . 14

2.3.1 Corpus Based Query and Document Suggestion 14

2.3.2 Fuzzy Query Auto-Completion Over Structured Data 15

2.3.3 Probabilistic Corpus Based Query Auto-Completion 15

2.3.4 Thesaurus Based Query Auto-Completion for Mobile Search 16

2.3.5 Context Sensitive Query Auto-Completion Based on Query Logs . 16

2.4 Query Recommendations . 16

2.4.1 Cluster Based Query Recommendations 17

2.4.2 Context-Sensitive Query Recommendations 17

2.5 Contextual IR . 18

2.5.1 Context Type . 18

2.5.2 Contextual Resources . 19

ii TABLE OF CONTENTS

2.5.3 Context-Sensitive Retrieval . 19

2.5.4 User Search Behavior . 20

2.5.5 Detecting Logical Sessions . 21

2.6 Query Similarity . 21

2.6.1 Query Expansion . 21

2.6.2 Query Similarity Based on Query Log Analysis 22

2.6.3 Semantic Relatedness . 22

3 Most Popular Completion 25

3.1 Query Auto-Completion Definition . 25

3.2 Hit Definition . 25

3.3 Query auto-Completion Framework . 25

3.4 Completion Criteria . 26

3.5 Completion Ordering . 26

3.6 MostPopularCompletion Definition . 26

4 Nearest Completion 29

4.1 Search Sessions . 29

4.2 The Basic Algorithm . 30

4.3 Context Representation . 31

4.4 Vector Representation via Query Expansion 32

4.5 Recommendation Based Query Expansion 33

4.6 System Architecture . 34

5 Hybrid Completion 35

5.1 Motivation . 35

5.2 HybridCompletion Definition . 36

5.3 An Adaptive Combination Approach . 37

5.4 Re-ranking of Original Lists . 37

6 Empirical Study 39

6.1 Experimental Setup . 39

TABLE OF CONTENTS iii

6.2 Evaluation framework . 41

6.3 Evaluation Metric . 42

6.4 Comparison Experiments . 42

6.5 Scalability Experiments . 48

6.6 Parameter Tuning Experiments . 50

7 Discussion and Conclusions 55

Bibliography . 57

iv TABLE OF CONTENTS

List of Figures

6.1 Session length distribution in the AOL log 40

6.2 Session length distribution in the AOL log; log log scale 41

6.3 wMRR comparison for different context types 45

6.4 Weighted fraction of a higher MRR value comparison 46

6.5 wMRR comparison as a function of query frequency 48

6.6 Scalability experiment; wMRR comparison of different context types . . . 49

6.7 Scalability experiment; wMRR as a function of database size 50

6.8 Scalability experiment; wMRR comparison as a function of query frequency 51

6.9 wMRR comparison as a function of the recommendation tree depth 52

6.10 wMRR comparison as a function of HybridCompletion’s α 53

vi LIST OF FIGURES

List of Tables

6.1 Algorithms most cost-effective parameters 43

6.2 Anecdotal examples of algorithms output 44

6.3 wMRR comparison by context relatedness 47

6.4 wMRR comparison as a function of the context length 51

6.5 wMRR comparison as a function of the recommendation algorithm 52

viii LIST OF TABLES

Abstract

Query auto completion is known to provide poor predictions of the user’s query when

her input prefix is very short (e.g., one or two characters). In this study we show that

context, such as the user’s recent queries, can be used to improve the prediction quality

considerably even for such short prefixes. We propose a context-sensitive query auto

completion algorithm, NearestCompletion, which outputs the completions of the user’s

input that are most similar to the context queries. To measure similarity, we represent

queries and contexts as high-dimensional term-weighted vectors and resort to cosine

similarity. The mapping from queries to vectors is done through a new query expansion

technique that we introduce, which expands a query by traversing the query recommen-

dation tree rooted at the query.

In order to evaluate our approach, we performed extensive experimentation over the

public AOL query log. We demonstrate that when the recent user’s queries are rele-

vant to the current query she is typing, then after typing a single character, Nearest-

Completion’s Mean Reciprocal Rank (MRR) is 48% higher relative to the MRR of the

standard MostPopularCompletion algorithm on average. When the context is irrelevant,

however, NearestCompletion’s MRR is essentially zero. To mitigate this problem, we

propose HybridCompletion, which is a hybrid of NearestCompletion with MostPopu-

larCompletion. HybridCompletion is shown to dominate both NearestCompletion and

MostPopularCompletion, achieving a total improvement of 31.5% in MRR relative to

MostPopularCompletion on average.

2 Abstract

List of Acronyms

ESA Explicit Semantic Analysis

HMM Hidden Markov Model

HC Hybrid Completion

IDF Inverse Document Frequency

IR Information Retrieval

MLE Maximum Likelihood Estimator

MM Markov Model

MPC Most Popular Completion

MRR Mean Reciprocal Rank

NC Nearest Completion

PPR Personalized Page Rank

PPV Personalized Page Rank Vector

QAC Query Auto-Completion

QFG Query Flow Graph

TF Term Frequency

URL Uniform Resource Locator

VSM Vector Space Model

wMRR Weighted Mean Reciprocal Rank

4 List of Acronyms

List of Symbols

∞ Infinity

µ Mean

σ Standard deviation

Z Standard score

6 List of Symbols

Chapter 1

Introduction

Query auto completion (QAC) [6, 58, 27, 5] is one of the most visible features in Web

Search today. It is offered by all major search engines and in almost all their search boxes.

Query auto completion helps the user formulate her query, while she is typing it. Its main

purpose is to predict the user’s intended query and thereby save her keystrokes. With the

advent of instant as-you-type search results (a la the recently released Google Instant1),

the importance of correct query prediction is even more acute, because it determines the

speed at which the user sees the suitable results for her intended search and the amount

of irrelevant results that are displayed to her along the way.

The basic principle that underlies most query auto completion systems is the wisdom

of the crowds. The search engine suggests to the user the completions that have been

most popular among users in the past (we call this algorithm MostPopularCompletion).

For example, for the prefix am, Bing suggests amazon and american express as the top

completions, because these have been the most popular queries starting with am. As the

user is typing more characters, the space of possible completions narrows down, and

thus the prediction probability increases. For example, if the user is looking for american

presidents in Bing, after typing the 14 characters american presi the desired query becomes

the top completion.

Clearly, during the first few keystrokes the user is typing, the search engine has little

1http://www.google.com/instant/

8 Chapter 1. Introduction

information about her real intent, and thus the suggested completions are likely to mis-

predict her query. In our experiments, conducted over the public AOL query log [42],

we found that after the first character, MostPopularCompletion’s average MRR is only

0.187.

The objective of this study is to tackle the most challenging query auto completion

scenario: after the user has entered only one character, try to predict the user’s query

reliably. Being able to predict the user’s query on her first character rather than, say,

on her 10-th character would not only save the user a few keystrokes, but would also

make the whole search experience more interactive, as the feedback cycle of (query →

results → query refinement) would be shortened significantly. In addition, cutting down

the search time for all users implies lower load on the search engine, which translates to

savings in machine resources and power.

But how can we overcome the inherent lack of information when the user has en-

tered only a few characters of her intended query? Our main observation is that the user

typically has some context, which can reveal more information about her intent. For ex-

ample, if just before entering the characters am the user searched for richard nickson, it

is more likely that the user is looking for american presidents than for amazon or american

airlines. Similarly, if the user was browsing a page about President Lincoln or reading

an article about american history. On the other hand, if the user has just tweeted about

a planned trip, american airlines might be the more probable query. Recent queries, re-

cently visited web pages, and recent tweets are examples of online activities that may

indicate the user’s intent and, if available, could be used by the search engine to bet-

ter predict the query even after a few keystrokes. This is called context-sensitive query

auto completion. While the idea is very intuitive and context has been used in other sce-

narios to disambiguate user intent (e.g., in search [33, 18] and in query recommenda-

tions [13, 24, 12, 9, 50]), there is almost no published work on its application to query

completion.

Of the many different possible user contexts, our focus in this study is on the user’s

recent queries (within the same session), as they are readily available to search engines.

Based on our empirical analysis of the AOL log, 49% of the searches are preceded by a

9

different search in the same session, and are thus amenable to context-sensitive query

completion.

One possible approach to use recent queries to improve query auto completion is to

generalize MostPopularCompletion to rely on the popularity of query sequences rather

than just the popularity of individual queries. Suppose the user’s previous query in the

same session is y and that the current user input (query prefix) is x. Then, the search

engine will suggest the completions of x that were most frequently searched for after y.

For example, if after the query richard nixon the most popular successive query starting

with am is american presidents, the search engine will suggest american presidents as its top

completion. This is in fact the main principle underlying most of the work on context-

sensitive query recommendations [13, 24, 12, 9, 50]. The main caveat of this approach

is that it heavily relies on the existence of reoccurring query sequences in search logs.

Nevertheless, due to the long-tail distribution of query frequencies, many of the query

sequences generated by users have never occurred before (by our estimate, 89% of the

query pairs are new).

Some studies tried to mitigate the sparsity of query sequences by clustering similar

query sequences together, based on features extracted from queries, like their topical

categories or their terms [13, 12]. Machine learning techniques, like HMMs, are then

used to predict the intended query, if the sequence of previous queries can be associated

with a cluster in the model. This approach is still challenged by long-tail contexts, i.e.,

when the most recent query (or queries) have rarely occurred in the log (by our estimates,

in 37% of the query pairs the former query has not occurred in the log before). In this

case, the sequence of previous queries may not be easily associated with a cluster in the

model. Moreover, none of these previous studies took the user input (prefix) into account

in the prediction, so their applicability to query auto completion is still unknown.

We take a different approach to tackle this problem. Our algorithm relies on the fol-

lowing similarity assumption: when the context is relevant to the intended user query,

the intended query is likely to be similar to the context queries. The similarity may be syn-

tactic (e.g., american airlines → american airlines flight status) or only semantic (e.g., ameri-

can airlines → continental). By our estimates, 56% of the refinements are non-syntactic.

10 Chapter 1. Introduction

Based on the similarity assumption, we propose the NearestCompletion algorithm,

which works as follows: given a user input x and a context y, the algorithm suggests to

the user the completions of x that are most similar to y. Choosing the suitable similarity

measure is non-trivial, though, because we would like it to be both correlated with refor-

mulation likelihood (that is, the more similar two queries A and B are the more likely they

are to be reformulations of each other, and vice versa) and universally applicable (that is,

the similarity is meaningful for any pair of queries A and B). The former requirement

guarantees that the completions that are similar to the context are indeed more likely to

be the user’s intended query. The latter requirement makes sure that the algorithm can

deal with any user input.

The above two requirements make many of the state-of-the-art query similarity mea-

sures less appealing for this problem. For example, syntactic measures, like edit distance,

do not take all reformulation types into account. Similarity measures that are based on

co-occurrence in search sessions [61, 19], on co-clicks [2, 13], or on user search behav-

ioral models [9, 41, 12, 50], are not universally applicable to all query pairs due to their

low coverage of queries, as long tail queries are rare in the query log. Similarity mea-

sures that are based on search result similarity [11] are not necessarily correlated with

reformulation likelihood.

Given a context, query recommendation algorithms [2, 61, 50] output a list of recom-

mendations that are likely reformulations of the previous query. So a possible similarity

measure would be one that associates each query with its recommendations. The main

caveat with this approach is that query recommendation algorithms are frequently de-

signed to output only a few high quality recommendations and thus it is plausible that

none of them are compatible with the user’s input. Hence, this technique is not univer-

sally applicable.

We propose a new method of measuring query similarity, which expands on the latter

recommendations based approach, but is universally applicable and is thus more suit-

able to query completion. Similarly to the result-based similarity of Broder et al. [11], we

expand each query to a richer representation as a high-dimensional feature vector and

then measure cosine similarity between the expanded representations. The main nov-

11

elty in our approach is that the rich representation of a query is constructed not from

its search results, but rather from its recommendation tree. That is, we expand the query

by iteratively applying a black box query recommendation algorithm on the query, on

its recommendations, on their recommendations, and so on. The nodes of the traversed

tree of recommendations are tokenized, stemmed, and split into n-grams. These n-grams

are the features of the expanded representation vector and the weight of each n-gram is

computed based on its frequency and depth in the tree.

The above representation has two appealing properties. First, as the basic building

block in the construction is a black-box query recommendation algorithm, we can lever-

age any state-of-the-art algorithm and inherit its power in predicting query reformula-

tions. Second, the above scheme provides a continuous spectrum of exceedingly rich

representations, depending on the depth of the tree traversed. For example, a depth-0

traversal results in the n-grams of the root query itself, while a depth-2 traversal re-

sults in the n-grams of the query, its recommendations, and their recommendations. The

main point is that the feature space remains the same, regardless of the traversal depth.

So even if we cannot traverse the recommendation tree of a certain query (e.g., because

it’s a long-tail query for which there are no recommendations available), the similarity

between its representation and the richer representation of other queries is meaningful.

This property ensures that our query auto completion algorithm is applicable even for

long-tail contexts that have never been observed in the log before.

Our empirical analysis shows that the average MRR of NearestCompletion (with

depth-3 traversal) over queries whose context is relevant is 48% higher relative to the

average MRR of MostPopularCompletion over the same queries. However, when the

context is irrelevant to the intended query, NearestCompletion becomes destructive, so

its average MRR is 19% lower relative to the average MRR of MostPopularCompletion

over all queries. To mitigate this problem, our final algorithm, HybridCompletion, is a

hybrid of MostPopularCompletion and NearestCompletion. Each of the two algorithms

provides a list of top k matches. We aggregate the two lists by standardizing the contex-

tual score and the popularity score of each candidate completion and then computing a

final score which is a convex combination of the two scores. The completions are ranked

12 Chapter 1. Introduction

by these final scores. We show that HybridCompletion dominates both NearestCom-

pletion and MostPopularCompletion. Its average MRR is 31.5% higher relative to the

average MRR of MostPopularCompletion.

As our new algorithm relies on the standard cosine similarity measure between vec-

tors, it can be implemented efficiently over standard high-performance search architec-

tures. This is a crucial property of the algorithm, because query auto completions need

to be provided to the user in a split-second as she is typing her query. Note that the rich

representation of the recent queries can be cached and retrieved quickly as the user is

typing her current query. The current query requires no enrichment.

Chapter 2

Related Work

2.1 Overview

The following section surveys art that relates to different aspects of this study. We walk

through query assistance techniques, namely query auto-completion and query recom-

mendations. In particular, we review context-sensitive query assistance algorithms. As

context has been studied in other Information Retrieval (IR) domains, we expand our

review to contextual IR in general. Last, we review related art on query similarity and

query expansion.

2.2 Query Assistance

Search engine users form natural language queries for the purpose of expressing their

information need. Query formulation is thus a crucial step in the search process, as it

directly effects the returned search results and therefore the user’s search experience.

Modern search engines assist users at the query formulation stage, by suggesting to the

user a list of queries to choose from. Two major query assistance methods exist in the

literature: query auto-completion and query recommendations. Despite the similar output,

the two methods defer in their input and objective. The main objective of query auto-

completion is to predict the user’s query while she types it. The input is an incomplete

14 Chapter 2. Related Work

query, thus the user’s intent is highly vague or even unknown. In contrast, in query

recommendations, the input is a full user query that has just been typed. The main

objective of query recommendations is to suggest alternative queries, also named query

re-formulations. These recommendations assist the user to improve expressing her intent,

or explore additional information related to her query.

2.3 Query Auto-Completion

Query auto-completion has received relatively little attention in the literature. Several

methods have been proposed for completing user queries, differing in various aspects

such as the target application, the type of the data being searched, the data-source used

for extracting completions, the output format and the ranking method used.

2.3.1 Corpus Based Query and Document Suggestion

Bast and Weber [6] suggest an algorithm and an efficient indexing infrastructure for sup-

porting query auto-completion. Given the user’s input, which is composed of complete

terms followed by a prefix of the next term, their algorithm suggests to the user term

completions. For example, if the user has typed ‘car d‘, the algorithm will suggest terms

starting with ‘d‘, such as ‘dealer‘ or ‘driver‘. These will imply the queries ‘car dealer‘ and

‘car driver‘. The suggested term completions are extracted from documents containing

the user’s typed terms, ‘car‘ in our example. In addition to suggesting completions of

the user’s prefix, Bast and Weber’s algorithm outputs top document hits of the suggested

completions. Thus for example, if ‘car dealer‘ was suggested as a completion, top hits of

the query ‘car dealer‘ will be presented to the user. Bast and Weber propose to rank the

suggested completions, based on the scores of their corresponding hit documents. Their

intuition is that queries resulting in highly scored documents should be ranked higher,

since such queries are expected to be more useful to the user. Bast and Weber propose an

indexing data-structure implementation that is time and space efficient. The proposed

data-structure efficiently supports auto-completion while the user types her query, while

requiring no additional space over a state-of-the-art indexing infrastructure.

2.3. Query Auto-Completion 15

2.3.2 Fuzzy Query Auto-Completion Over Structured Data

Ji et al. [27] explored an interactive and fuzzy search paradigm, focusing on searching

over structured records containing textual information. While the user types her query,

the proposed algorithm auto-completes query terms and displays matching data records.

The search is fuzzy in the sense that returned records may contain text that is similar

enough to query terms, not necessarily an exact match. For example, if the user types

‘professor smyt‘, records containing ‘professor smyth‘ are returned, as well as ones con-

taining ‘professor smith‘. In this work, the user is not given completion suggestions

to choose from, rather, gets the final results with query prefixes highlighted. In terms

of ranking, the authors propose a ranking mechanism that is based on the following

factors: (1) similarity between the predicted keyword and the input prefix (2) query in-

dependent keywords weight such as Inverse Document Frequency (IDF) (3) query inde-

pendent record weight.

Ji et al. observe the crucial aspect of performance in auto-complete, as queries need

to be processed for every keystroke. Thus they propose a highly efficient algorithm.

2.3.3 Probabilistic Corpus Based Query Auto-Completion

Bhatia et al. [8] propose a probabilistic method for generating query auto-completions

from a given corpus. At a pre-processing stage, they create a repository of phrases by

extracting N-grams from the corpus. At run-time, the algorithm’s gets as an input the

user’s typed incomplete query. The algorithm’s task is to suggest phrase completions

that have a high probability to be eventually typed by the user. The proposed model

estimates the desired probability by estimating two probabilities: (1) the probability that

some phrase will be typed by the user, given the prefix that user is still typing, i.e. the last

query term (2) the correlation between a phrase and the user’s query, i.e. all preceding

query terms.

16 Chapter 2. Related Work

2.3.4 Thesaurus Based Query Auto-Completion for Mobile Search

Arias et al. [1] propose a query auto-completion algorithm for mobile search. Their

method is semantic, rather than syntactic and is additionally context-sensitive. Their

completions are thesaurus-based concepts whose relatedness to the user’s context is de-

termined by a rule-based mechanism. This approach does not seem to fit the scalabil-

ity requirements of web search. In comparison, we suggest a scalable algorithm that is

based on query log data. Our algorithm is able to efficiently suggest completions given

any user context, including rare contexts that have never occurred in the log before.

2.3.5 Context Sensitive Query Auto-Completion Based on Query Logs

Christian and Gertz [51] propose a context-sensitive query auto-completion algorithm,

where completion candidates are extracted from the query log. The authors propose

to model the probability that a completion is relevant to the user, based on the user’s

prefix as well as her contextual information. They demonstrate context-sensitive query

auto-completion for time and location contextual information. Our algorithm addresses

different contextual information, namely, recent queries based context. Applying recent

queries based context in auto-complete, poses non trivial challenges that are not tackled

by Christian and Gertz work. Examples are identifying completions relevant to the re-

cent queries, ranking completions, coping with rare context and with irrelevant context.

In comparison, our work tries to address those challenges.

2.4 Query Recommendations

Similarly to query auto-completion, query recommendations assist users in phrasing

their intent. Numerous query recommendation algorithms have been introduced, re-

lying on varied techniques, including topic clustering [2, 7], query co-occurrence analy-

sis [19], session analysis [61, 24, 12], and user search behavioral models [41, 50, 9, 56]. As

our context-sensitive query auto-completion algorithm is based on similarity between

queries, we will elaborate on two query recommendation algorithms, which are based

2.4. Query Recommendations 17

on recommending similar queries.

2.4.1 Cluster Based Query Recommendations

Baeza-Yates et al. [2] query recommendation algorithm is based on suggesting queries

that semantically relate to the user’s query. Query log based queries form the repository

of candidate query recommendations. A query is represented as a weighted vector of

terms, where the terms are extracted from the query’s clicked documents. Term weights

are based on a variant of TF-IDF, which takes into account document click frequency,

in addition to the standard term frequencies information. At a pre-processing stage,

queries are clustered into groups of similar queries, based on the proposed similarity

measure. Queries within a cluster are ranked by the support of the query, which measures

how relevant a query is within the cluster, based on click-through information. Upon

runtime, given a user’s input query q, the algorithm locates the cluster C that q belongs

to. It then suggests queries from C ranked by their support, as well as by their similarity

to q.

Similarly to Baeza-Yates et al. [2], Beeferman and Berger [7] cluster query log queries

into groups of similar queries, later used for query recommendations. Their clustering

algorithm is based on the query log bipartite graph of queries and their associated clicked

documents. The principal difference from Baeza-Yates et al. method is that Beeferman

and Berger’s algorithm is (as they phrase) ‘content-ignorant‘. I.e., the algorithm makes

no use of the content of the documents or queries, rather is based on query-click rela-

tions only. The similarity between two queries is measured by the overlap between their

associated sets of clicked documents. The intuition is that queries which share a large

fraction of common clicked documents are ones that express a similar information need.

Thus clusters of queries represent different ways or reformulating a similar intent.

2.4.2 Context-Sensitive Query Recommendations

Several context-sensitive query recommendation algorithms have been proposed in the

literature. Boldi et al. [9] compute query recommendations by running Personalized PageR-

18 Chapter 2. Related Work

ank (PPR) on their Query Flow Graph (QFG). As the mass of PageRank’s teleportation vec-

tor is concentrated on the context queries, the recommendations generated are context-

sensitive. The run time efficiency of this algorithm is questionable, as PageRank com-

putation is heavy. Cao et al. [13, 12] and He et al. [24] train models for query sequences

based on analysis of such sequences in search logs. They use, among others, some ma-

chine learning models, like Variable Length Hidden Markov Model (HMM) and Mixture

Variable Memory Markov Model. At run time, these models are used to predict the next

user’s query from her previous queries.

It is not totally clear how these techniques deal with long-tail contexts that have never

occurred in the log before. In comparison, our algorithms are adapted to query auto-

completion, can deal with long tail contexts, have scalable runtime performance, and are

robust to irrelevant contexts.

2.5 Contextual IR

Contextual IR has been identified as one of the important and central challenges in the

area [16]. It has been observed that considering the user’s current query solely is not

sufficient, as user queries are short and ambiguous [16, 25, 34]. Additionally, different

users or even the same user, phrase different information needs using the same query or

syntactically similar queries [14, 4, 36]. Therefore, IR applications should leverage user’s

context in order to exploit additional information about the user’s information need and

thus improve effectiveness.

Previous work tackles the context sensitivity challenge by exploiting different con-

textual resources, and proposing a variety of context models. The different approaches

differ in the methods they use for leveraging the context, and in the IR applications they

apply their methods to.

2.5.1 Context Type

Two categories of user context are addressed in the literature: long-term context and short-

term context [52]. Long-term context is based on global information about the user such

2.5. Contextual IR 19

as demographic, long-term search activity and user’s interests information. Short-term

context is based on the user’s recent search activity, e.g., the user’s recent queries and

clicks in the last 30 minutes.

2.5.2 Contextual Resources

A large variety of contextual resources are used in the literature for modeling the user

context. Examples are search queries [12, 9, 52], click-through information [52, 46], the

amount of time a user spent on a specific result page [59], browsing history [55, 40], and

the user’s current location and time [51].

2.5.3 Context-Sensitive Retrieval

The most explored application is contextual retrieval, having numerous papers, e.g.

[55, 52, 46, 33, 18, 43, 40, 44]. The objective of contextual retrieval is to exploit the user’s

context in order to personalize search results, and thus improve retrieval accuracy. A va-

riety of context modeling and personalization methods where proposed in the literature.

Interests Based User Model

One approach for personalizing retrieval is to create a user profile based on her general

interests. Interests are represented by categories extracted from a pre-defined taxon-

omy [26]. Users need to explicitly describe their categories of interests, or alternatively,

interests may be deduced implicitly, e.g. from the user’s query history [37]. Documents

are also mapped to categories, and thus search results are re-ranked according to the

user’s interests. For example, Personalized PageRank [26] computes a personalized Page

Rank Vector (PPV) for each set of documents belonging to some category. PPV’s and user

model of interests are used at query time for re-ranking search results.

User Model as a Weighted Vector of Terms

A second approach is to extract terms rather than high level categories from the user’s

context, and use those terms for re-ranking search results. Teevan et al. [55] model the

20 Chapter 2. Related Work

user by a rich term index, which is based on the user’s personal content such as web

pages viewed, desktop documents and more. The authors propose to re-rank search re-

sults by assigning new weights to terms in the search formula, based on term occurrences

in the user’s content. Kraft et al. [33] represent the user context as a weighted vector of

terms, which may be obtained from textual resources such as the current page viewed.

They propose three different techniques for personalizing search results: (i) query rewrit-

ing - augmenting context terms to the original query; (ii) rank-biasing - giving boost to

context terms in retrieved documents; (iii) iterative filtering meta search - generating a set

of sub-queries from the query and context vector. Sub queries’ result lists are then com-

bined into the final retrieved documents list.

Machine Learning Based Personalization

A third approach proposes to exploit the user’s search context by applying learning to

rank methods. Radlinski and Joachims [46] coined the term query chain which they de-

fine as a sequence of queries that relates to a similar information need. In contrast to

learning methods that consider each query solely, they take advantage of query chains

in order to generate new preference judgment types. For example, a clicked document

for a query q is preferred over any result skipped in queries preceding q in the same

query chain. Thus, considering query chains implies deducing preference judgments of

many more documents. The authors demonstrate that their method outperforms static

ranking functions, as well as learning to rank methods that do not consider query chains.

2.5.4 User Search Behavior

User search behavior is a research area that relates to contextual IR. In order to effectively

exploit user’s context, it is beneficial to understand how users conduct search. An exten-

sive research exists on different aspects of users search behavior. Examples are studies

that explore the way users re-find information [54, 57]. Others try to predict the user’s

future search actions [35, 15], interests [31], and state, e.g., whether the user is satisfied

by search results [17, 22].

2.6. Query Similarity 21

2.5.5 Detecting Logical Sessions

When considering search history based context, an essential building block is the abil-

ity to segment user’s past sessions into logical sessions. Previous research tackles this

problem in different ways. He and Goker [21] proposed a method for detecting session

boundaries using a time interval threshold. Later, He et al. [23] extended their time-based

method to additionally consider features of similarity between queries, which improves

the quality of session segmentation. Subsequent papers point out that users tend to

be multi-tasking within a particular session [38]. In addition, users tend to span their

search goals across multiple sessions [46, 10, 30, 32]. Different methods were proposed

for identifying logical sessions given the user’s search history. Several studies [46, 30, 32]

propose machine learning classifiers for detecting queries belonging to the same search

task. Lucchese et al. [38] propose a similarity measure between queries and clustering

methods for partitioning a given search session into multiple task-based sessions. Boldi

et al. [10] suggest the Query Flow Graph which is an aggregating model of all users’ search

sequences as reflected by the query log. The Query Flow Graph is used for computing

the most probable partitioning of a particular search history into logical sessions.

2.6 Query Similarity

A variety of query similarity measures exists in the literature. This includes trivial syn-

tactic similarity measures such as Jaccard distance, expansion techniques that overcome

query sparsity problem such as Roccio’s method [49], methods that exploit query log

information [2, 7, 41], and semantic relatedness techniques [48, 28, 53, 20, 45, 60, 47].

2.6.1 Query Expansion

Query expansion is a well established field (see [39] for an overview). Query expan-

sion techniques add terms such as synonyms, to the user’s original query, in order to

improve the way the query represents an information need. A classical application of

query expansion is improving search recall. Query expansion methods alter the user’s

22 Chapter 2. Related Work

query under the hoods, and thus the user is not aware of the query modification.

Classical methods expand the query using thesauri. This is limited and non-scalable.

Roccio’s relevance feedback method [49] expands the query from terms that occur in

its search results. The algorithm (which was originally formulated in the vector space

model) alters the original query by forming a new vector that maximizes similarity with

relevant documents, while minimizing similarity with irrelevant documents. I.e., a vec-

tor that optimally separates between relevant and irrelevant documents. In the vector

space model, the optimal query is formulated as the difference between the centroid of

the relevant documents, and the centroid of the irrelevant documents. In many cases,

only positive feedback is considered, and thus the centroid of relevant documents serves

as the expanded query. The set of documents used for expansion are ones retrieved as

a result of the query. These documents are manually marked as relevant or irrelevant,

and the expansion is done presumably in several iterations. In order to avoid the costly

manual intervention, pseudo relevance feedback [39] was proposed. The method automates

the manual tagging of documents relevancy by considering the top k results of the query

as the relevant set of documents.

2.6.2 Query Similarity Based on Query Log Analysis

Various methods rely on query log analysis for computing query similarity, e.g., [29, 2,

7, 3, 9]. Baeza-Yates [3] proposes several ways to measure similarity between queries,

based on various data sources: (1) common terms (2) session co-occurrence (3) common

clicked URLs (4) links between clicked URLs (5) common terms in clicked document.

Many of existing approaches use variants of these data sources for computing query

similarity.

2.6.3 Semantic Relatedness

Semantic relatedness techniques aim to measure the level of similarity between two natu-

ral language texts. Various semantic relatedness techniques exist in the literature, e.g. [48,

28, 53, 20, 45, 60, 47]. Gabrilovich and Markovitch [20] propose Explicit Semantic Anal-

2.6. Query Similarity 23

ysis (ESA), which leverages human knowledge that is maintained in Wikipedia. Their

core idea is to map text into a high-dimensional space, where features are Wikipedia

based concepts. Text is thus modeled as a weighted vector of concepts that represent

the meaning behind the text. Similarity is measured using standard metrics such as the

cosine similarity. Semantic relatedness techniques that accept multi-term texts as an in-

put (such as ESA), may be used for measuring the semantic similarity between search

queries.

24 Chapter 2. Related Work

Chapter 3

Most Popular Completion

3.1 Query Auto-Completion Definition

A query auto completion (QAC) algorithm accepts a user input x, which is a sequence of

characters typed by the user in the search engine’s search box. The user input is typically

a prefix of a complete query q that the user intends to enter. The algorithm returns a list

of k completions, which are suggestions for queries, from which the user can select.

3.2 Hit Definition

A completion c is said to be a hit, if it equals the query q that the user was about to enter.

In this work we will focus on hits as the main measure of success for QAC algorithms,

as it is relatively easy to estimate hit rates when inspecting search logs. In reality, a QAC

algorithm may be successful even if it returns a completion that is different from the

query the user was about to type but that describes the same information need.

3.3 Query auto-Completion Framework

Most QAC algorithms share the following framework. In an offline phase a query database

is built. The database consists of a large collection of queries that are of high qual-

26 Chapter 3. Most Popular Completion

ity and represent the intents of the search engine’s users. Major search engines build

this database from their query logs by extracting the most frequently searched queries.

Smaller search engines, which do not have sufficient user traffic, construct the database

from prominent phrases that occur in the corpus being searched.

3.4 Completion Criteria

Each QAC algorithm defines its own criteria for determining whether a query q is an

eligible completion for an input x. Traditional QAC algorithms require that q is a proper

string completion of x (i.e., that x is a prefix of q). For instance, barack obama is a proper

completion of the input bar. Advanced QAC algorithms support also non-proper com-

pletions, like mid-string completions (e.g., ob → barack obama) and spell corrections (e.g.,

barak → barack obama). We will denote the set of queries that are eligible completions of

an input x by completions(x).

3.5 Completion Ordering

At run-time, the QAC algorithm accepts an input x, and selects the top k eligible com-

pletions for x. Completions are ordered by a quality score, which represents how likely

each completion is to be a hit. Since the algorithm needs to provide the user with the

suggested completions as she is typing the query, it has to be ultra-efficient. To achieve

this high performance, the algorithm needs a data structure, like a TRIE or a hash table,

that supports fast lookups into the query database using prefix keys.

3.6 MostPopularCompletion Definition

MostPopularCompletion (MPC) is the standard and most popular QAC algorithm. The

quality score it assigns to each query q is the relative frequency of this query in the log

from which the query database was built. That is, for an input x, MostPopularComple-

tion returns the k completions of x that were searched for most frequently.

3.6. MostPopularCompletion Definition 27

More formally, let p(q) denote the probability distribution of incoming queries; we

assume that p(q) is identical for all users. Let p(q|x) denote the probability that the user’s

intended query is q, given her typed input x. MostPopularCompletion ranks completion

queries by p(q|x), such that the most likely completion is returned at the top rank.

In order to rank completions by p(q|x), we first apply Bayes Rule and express p(q|x)

as:

p(q|x) =
p(x|q) · p(q)

p(x)

p(x|q) denotes the probability that the user will type x, given that she has query q in

mind. For simplicity, we pose the following assumptions:

1. Users type queries by starting from the beginning of the query. Thus, x is a prefix

of q, rather than any sub-string.

2. Users type the exact characters of q. In particular, we don’t consider errors while

typing.

3. Auto-complete does not affect users. This implies that a user will fully type q, even

if q was suggested to her while typing.

Under the above assumptions we get:

p(x|q) =















1 iff x is an exact prefix of q

0 otherwise

As x is given, p(x) is constant over all queries q. Consequently, p(x) does not affect

the ranking and may be ignored. Thus, we end up with:

p(q|x)
rank
=















p(q) iff x is an exact prefix of q

0 otherwise

Note however, that in the more general case, p(q|x)
rank
= p(x|q) · p(q). This requires

estimating p(x|q), which we don’t cover in the current research.

28 Chapter 3. Most Popular Completion

MPC applies Maximum Likelihood Estimation (MLE) for estimating p(q). Recall that we

assumed p(q) is identical for all users, and thus may be estimated by the aggregation of

all observed queries. Thus, p(q) is estimated by the relative frequency of q in the query

log:

p̂(q) = pMLE(q) =
freq(q)

∑q′∈log freq(q′)

Finally, we get:

p(q|x)
rank
=















freq(q)
∑q′∈log freq(q′)

iff x is an exact prefix of q

0 otherwise

Chapter 4

Nearest Completion

As we will see in Section 6, MostPopularCompletion frequently fails to produce hits

when the user input is still very short (say, 1-2 characters long). The NearestCompletion

(NC) algorithm that we introduce next uses the user’s recent queries as context of the

user input x. When the context is relevant to the query the user is typing, the algorithm

has better chances of producing a hit.

4.1 Search Sessions

A logical search session is an interactive process in which the user (re-)formulates queries

while searching for documents satisfying a particular information need. It consists of a

sequence of queries q1, . . . , qt (t ≥ 1) issued by the user. The context of a user input x,

where x is the prefix of some query qi in the session, is the sequence of queries q1, . . . , qi−1

preceding qi. Note that if x is the prefix of the first query in the session, its context is

empty.

Since all the queries in a logical session pertain to the same information need, the

context of a user input is always relevant to this input by definition. In reality, how-

ever, detecting logical sessions is non-trivial as a user may switch her information need

within a short time frame. Mis-detection of logical search sessions leads to mis-detection

of contexts. In this section we ignore this problem and assume we have a perfect ses-

30 Chapter 4. Nearest Completion

sion detector, so contexts are always relevant. We will address this problem in the next

section.

The reader may wonder at this point how a QAC algorithm that runs on the search

engine’s server can access the user’s recent queries at run-time. The most straightfor-

ward solution is to keep the user’s recent queries in a cookie, if the user agrees to it.

Every time the user performs a search, the search engine returns the results and also

updates a cookie (that the browser stores on the user’s machine) with the latest search.

When the user types characters in the search engine’s search box, the browser sends the

user’s input along with the cookie to the search engine.

4.2 The Basic Algorithm

A context-sensitive QAC algorithm takes into account the user’s context, when estimat-

ing the probability of her intended query. More formally, let p(q|x, C) denote the condi-

tional probability that the next query is q, given the prefix x and the current context C.

Similarly to MostPopularCompletion, we apply Bayes Rule and get:

p(q|x, C) =
p(x|q, C) · p(q|C)

p(x|C)

We assume that the input x is independent of the context C, given the query q. That is,

p(x|q, C) = p(x|q). Thus:

p(q|x, C) =
p(x|q) · p(q|C)

p(x|C)

As x and C are given, p(x|C) is constant over all queries q. Consequently, it may be

ignored for the purpose of ranking.

We pose the same assumptions regarding p(x|q), as we did in MostPopularComple-

tion and thus have:

p(x|q) =















1 iff x is an exact prefix of q

0 otherwise

4.3. Context Representation 31

Finally, we end up with:

p(q|x, C)
rank
=















p(q|C) iff x is an exact prefix of q

0 otherwise

Estimating p(q|C) using MLE is problematic, because query logs are too sparse to

provide meaningful estimates for most (q, C) pairs. We tackle this problem by casting

it as an information retrieval (IR) problem: we treat the context C as a “query” and the

queries in the query database as “documents”. Indeed, our goal is to sift through the

many possible completions of x and find the ones that are most similar to the context C.

Looking at this problem through the IR prism, we can now resort to standard IR

techniques. We chose to implement NearestCompletion using the traditional Vector Space

Model (VSM), which is supported by the search library we used in our experiments. Each

context C is mapped to a term-weighted vector vC in some high dimensional space V.

Similarly, each query q in the query database is mapped to a vector vQ ∈ V. Nearest-

Completion then ranks the completions q of x, by the cosine similarity between vq and

vC:

Similarity(q, C) =
〈vq, vC〉

||vq|| · ||vC||
.

In other words, NearestCompletion outputs the k completions of x whose vectors are

most similar to vC.

4.3 Context Representation

Contexts and queries are objects of different types, so it may not be clear how to represent

both as vectors in the same space. However, since contexts are sequences of queries,

then we can produce context representations from query representations. Formally, if

C = q1, . . . , qt is a context and vq1
, . . . , vqt are the corresponding vectors, we produce the

context vector vC as a linear combination of the query vectors:

vC =
t

∑
i=1

wivqi
.

32 Chapter 4. Nearest Completion

The weights w1, . . . , wt are non-negative. They specify the relative contribution of each

context query to the context vector. As the more recent a context query is, the more

likely it is to be relevant to the current query, the weights need to be monotonically non-

decreasing. In our empirical analysis we experimented with different weight functions:

recent-query-only (wt = 1 and wi = 0 for all i < t), linear decay (wi = 1/(t − i + 1)),

logarithmic decay (wi = 1/(1 + ln(t − i + 1))), and exponential decay (wi = 1/et−i)).

4.4 Vector Representation via Query Expansion

The most important ingredient of the NearestCompletion algorithm is the representa-

tion of queries as term-weighted vectors. This representation eventually determines how

NearestCompletion ranks the completions of x. Ideally, we need this ranking to be con-

sistent with the ranking of completions by the conditional probabilities p(q|C). Note that

p(q|C) is the probability that the user reformulates the context queries C to the current

query q. Hence, the vector representation of queries needs to yield a similarity measure

so that similar queries are likely reformulations of each other and vice versa.

A naive approach would be to represent a query by its terms, as a bag of words. The

resulting similarity measure can capture syntactic reformulations, such as my baby is not

eating well → baby eating disorder, but not semantic refinements, like baby eating disorder

→ infant nutrition. The problem is that queries are short, and thus their vocabulary is too

sparse to capture semantic relationships.

In order to overcome this sparsity problem, we expand each query into a rich repre-

sentation. Query expansion [39] is used to augment the textual query with related terms,

like synonyms. For example, the query baby eating disorder may be expanded to baby in-

fant eating food nutrition disorder illness and the query infant nutrition may be expanded to

infant baby nutrition food. The two expanded forms now have high cosine similarity.

4.5. Recommendation Based Query Expansion 33

4.5 Recommendation Based Query Expansion

We introduce a new query expansion technique that leverages a large body of work on

query recommendation. A query recommendation algorithm suggests to the user high

quality reformulations of her query. Query recommendation algorithms rely on existing

query expansion techniques and in addition are tuned to provide likely reformulations

of the query. Hence, a plausible expansion of a query could be the list of recommen-

dations provided for it by such an algorithm. The advantage is that the added terms

are high precision keywords that appear in likely reformulations of the query. It follows

that two queries that have similar expanded forms of this sort share their reformulation

vocabulary and are thus more likely to be reformulations of each other.

The above approach produces high precision query expansions, but may lack cover-

age. If the query recommendation algorithm produces a small number of recommenda-

tions for each query (as most such algorithms do), then the resulting expanded forms

would be too sparse. To overcome this problem, we expand each query not just by its di-

rect recommendations but rather by the whole recommendation tree rooted at this query.

Formally, let A be a query recommendation algorithm, and let us denote by A(q) the

top k recommendations that A provides for a query q.

Definition 4.5.1 (Query Recommendation Tree) Let d ≥ 0 be an integer. Let Tq,d denote

the depth-d query recommendation tree of query q. The root node of Tq,d corresponds to the

query q. The children of each node v in the tree correspond to the recommendations for v (A(v)).

Note that the same query may occur multiple times in the tree and possibly at differ-

ent levels of the tree.

The query recommendation tree is the main building block in the construction of the

expanded form vq of a query q. The coordinates of vq correspond to n-grams that occur

within the queries in the tree. n-grams are extracted as follows: each query in the tree

is tokenized into terms, stop-words are eliminated, and the terms are stemmed. The

resulting queries are split into overlapping n-grams, where n = 1, . . . , N and N is an

upper bound on the size of n-grams we care about.

Let z be an n-gram. If z was not extracted by the above process, then vq[z] = 0. If z

34 Chapter 4. Nearest Completion

was extracted, let T(z) denote the nodes of the tree that contain z. We define the weight

of z in vq as follows:

vq[z] =



 ∑
u∈T(z)

weight(depth(u))



 · ln(IDF(z)).

This is essentially a TF-IDF weight. The sum counts the number of occurrences of z in the

tree, but it assigns different weights to different occurrences. The weight of an occurrence

depends on the depth of the node in which it is found. Note that the deeper the node

is, the weaker is its connection to the root query q, and hence the function weight(·)

is monotonically non-increasing. We experimented with various weighting functions,

including linear decay, logarithmic decay, and exponential decay. IDF(z) is the inverse

frequency of z in the entire query database.

4.6 System Architecture

Since NearestCompletion relies on the Vector Space Model, it can leverage standard and

optimized information retrieval architectures. In the offline phase, the algorithm com-

putes the rich representation of each query in the query database. The resulting vectors

are indexed in an inverted index. In addition, each query is indexed by its set of eligible

prefixes, so one can retrieve all completions of a given prefix quickly (note that wildcard

operator that is supported by standard search architectures can also be used for prefix-

based retrieval).

In run time, the algorithm accepts the user input x and the context C. The rich rep-

resentation of the queries that constitute C should be available in a cache, because these

queries have been recently processed by the search engine. The algorithm can therefore

compute the rich representation vC of C. It then retrieves from the index the queries that

are completions of x and whose rich representation is most similar to vC.

Note that a similar architecture was proposed by Broder et al. [11] to expand long-tail

queries for the purpose of matching relevant ads.

Chapter 5

Hybrid Completion

5.1 Motivation

NearestCompletion is designed to work well when the user input has a non-empty con-

text and this context is relevant to the query that the user is typing. In practice, however,

many queries have no context (51% by our experiments). In addition, due to incorrect

segmentation of search sessions, recent queries that are deemed as context may not be

relevant to the current query at all (by our experiments, 40% of the query pairs have

different information needs). In all of these cases NearestCompletion relies either on no

information or on false information and thus exhibits poor quality.

On the other hand, the standard MostPopularCompletion algorithm is not dependent

on context, and thus can do well even if the context is empty or irrelevant. It would have

been nice if one could identify these cases and use MostPopularCompletion instead of

NearestCompletion in them. Recognizing that the context is empty is easy. However,

how can one detect that the context is irrelevant, at run time? HybridCompletion cir-

cumvents this problem by using both algorithms when the context is non-empty.

36 Chapter 5. Hybrid Completion

5.2 HybridCompletion Definition

Given a user input x and a context C, HybridCompletion (HC) produces two ranked lists

of completions of x: LNC consists of the top ℓ completions returned by NearestComple-

tion and LMPC consists of the top ℓ completions returned by MostPopularCompletion.

The final ranked list of completions LHC is constructed by aggregating the two lists.

The results in each of the two lists are ranked by quality scores: LNC is ranked by

a similarity score, which we denote by simscore(·), and LMPC is ranked by a popular-

ity score, which we denote by popscore(·). The aggregated list LHC is constructed by

combining the two scoring functions into a single hybrid score, denote hybscore(·). As

simscore and popscore use different units and scales, they need to be standardized before

they can be combined. In order to standardize simscore, we estimate the mean similar-

ity score and the standard deviation of similarity scores in the list LNC. The standard

similarity score is then calculated as

Zsimscore(q) =
simscore(q)− µ

σ
,

where µ and σ are the estimated mean and standard deviation. The standard popularity

score is calculated similarly. The hybrid score is defined as a convex combination of the

two scores:

hybscore(q) = α · Zsimscore(q) + (1 − α) · Zpopscore(q)

where 0 ≤ α ≤ 1 is a tunable parameter determining the weight of the similarity score

relative to the weight of the popularity score.

Returning to the probabilistic formalization of NearestCompletion and MostPopu-

larCompletion, HybridCompletion may be formalized as an estimation of p(q|x, C). Hy-

bridCompletion is thus defined as the following convex combination of probabilities:

p̂(q|x, C) = pHC(q|x, C)
de f
= α · pNC(q|x, C) + (1 − α) · pMPC(q|x)

One can think of α as the prior probability that the next query has a relevant context

and thus would require a context-sensitive completion. Note that when α = 0 Hybrid-

5.3. An Adaptive Combination Approach 37

Completion is identical to MostPopularCompletion, and when α = 1 HybridCompletion

is identical to NearestCompletion (except for inputs that have empty context).

In Section 6, we experiment with different values of α in order to tune it appropriately.

5.3 An Adaptive Combination Approach

HybridCompletion, as described above, uses one global value for α, which is common

to all inputs and contexts. There may be scenarios though where it is desired to alter

the value of α adaptively. For example, if we have some indication that the context

is not relevant to the current user input, we may want to reduce α, while if we have

the opposite indication, we may want to increase α. Since the focus of this work is not

on session segmentation and context relevancy detection, we have not addressed this

direction.

5.4 Re-ranking of Original Lists

It is important to note that HybridCompletion may re-rank the original lists of comple-

tions it receives. For example, among the most popular completions, it will promote

the ones that are more similar to the context, and, conversely, among the most similar

completions, it will promote the more popular ones. This implies that HybridComple-

tion can dominate both MostPopularCompletion and NearestCompletion not only on

average, but also on individual inputs.

38 Chapter 5. Hybrid Completion

Chapter 6

Empirical Study

Our empirical study has two goals: (a) compare the best configuration of our algorithms

to the standard MostPopularCompletion algorithm; and (b) study the effect of the differ-

ent parameters of our algorithms on the quality of the results. To this end, we came up

with an automatic evaluation methodology for QAC algorithms, which estimates their

MRR based on a given query log. We used the AOL query log [42] in our experiments,

as it is publicly available and sufficiently large to guarantee statistical significance (other

public query logs are either access-restricted or are small).

6.1 Experimental Setup

For performing the empirical study we implemented the standard MostPopularCom-

pletion algorithm and our two algorithms (NearestCompletion and HybridCompletion).

The query database used by all algorithms was constructed from the queries that appear

in the AOL log. We segmented the log into sessions, using a simple standard segmen-

tation heuristic (every interval of 30 minute idle time denotes a session boundary). We

eliminated from the data all click information and merged duplicate queries that belong

to the same session. The final data sets consisted of 21,092,882 queries in 10,738,766 ses-

sions. We found that 40% of the sessions were of length greater than 1 and 49% of the

queries were preceded by one or more queries in the same session (hence being amenable

40 Chapter 6. Empirical Study

to context-sensitive QAC). Figures 6.1 and 6.2 demonstrate the session length distribu-

tion in the AOL log.

60% 20%

9%

4%

7%
�

�

�

�

����	�
�

Figure 6.1: Session length distribution in the AOL log

We partitioned the AOL log into two parts: a training set, consisting of 80% of the log,

and a test set, consisting of the remaining 20%. We computed a rich representation (see

Section 4) for a subset of 55,422 of the training set queries. The query recommendation

trees required for these rich representations were built using Google Suggest’s query

auto-completion service. We scraped the auto completions using the public external

service (we did not rely on privileged access to internal Google services or data). Since

Google poses strict rate limits on scrapers, we did not compute rich query representation

for all the queries in the training set.

The query database used for training each of the 3 algorithms we considered con-

sisted of these 55,422 queries. The frequency counts used by MostPopularCompletion

were computed based on the entire training set, and not based only on the queries in the

query database.

NearestCompletion and HybridCompletion were implemented by customizing Lucene1

to our needs. The experiments were performed in October 2010 on a dual Intel Xeon

3.4GHz processor workstation with 4GB RAM and two 320GB disks.

1http://lucene.apache.org/java/docs/index.html

6.2. Evaluation framework 41

10
0

10
1

10
2

10
0

10
2

10
4

10
6

Session length

S
es

si
o

n
 f

re
q

u
en

cy

Figure 6.2: Session length distribution in the AOL log; log log scale

6.2 Evaluation framework

We evaluate a QAC algorithm by how well it predicts the query the user is about to type.

The prediction quality depends on whether the algorithm succeeds to generate a hit, and

if it does, on the position of this hit.

Since all the algorithms we evaluate work the same when the current user input has

no context, then our evaluation focused only on queries that have context. We generated

sample queries with corresponding contexts as follows. We randomly sampled 40,000

sessions from the test set. For each selected session, we picked the first query among

the queries in the session that have context (i.e., they are not the first one in the session)

and that have a rich query representation (i.e., we scraped their recommendations/auto-

completions from Google). If the session had no such queries, it was dropped from the

sample. This resulted in 7,311 queries and contexts.

Our experiments focused on query auto-completion after having a single character

from the current query. This setting is the most challenging and thus demonstrates the

42 Chapter 6. Empirical Study

differences among the different algorithms most crisply.

6.3 Evaluation Metric

Recall that for a particular query q and context C, an algorithm A is said to have a hit at

position ℓ, if after receiving C and the first character of q, the algorithm returns q as the

ℓ-th completion for this character. We write in this case that hitrank(A, q, C) = ℓ (if A

has no hit at all, then hitrank(A, q, C) = ∞). Mean Reciprocal Rank (MRR) is a standard

measure for evaluating retrieval that is aimed at a specific object. The reciprocal rank of

an algorithm A on a particular (query, context) pair (q, C) is 1/ hitrank(A, q, C) (note that

the reciprocal rank is 0 when the algorithm has no hit). MRR is the expected reciprocal

rank of the algorithm on a random (query, context) pair. To estimate MRR, we take a

random sample S of (query, context) pairs, and compute the mean reciprocal rank of the

algorithm over these pairs:

MRR(A) =
1

|S| ∑
(q,C)∈S

1

hitrank(A, q, C)
.

MRR treats all (query, context) pairs equally. We observe, however, that some user

inputs are easier to complete than others. For example, if the user input is the letter

’z’, then since there are few words that start with z, the auto-completion task is easier

and is likely to produce better predictions. On the other hand, if the user input is the

letter ’s’, the numerous possible completions make the prediction task much harder. This

motivates us to work with a weighted version of MRR (denoted wMRR). Rather than

treating all (query, context) pairs uniformly, we weight them according to the number of

completions available for the prefix of the query.

6.4 Comparison Experiments

Our first set of experiments compare NearestCompletion and HybridCompletion to the

standard MostPopularCompletion. The comparison is based on the 7,311 random (query,

6.4. Comparison Experiments 43

context) pairs collected from our training set. We used in these experiments the param-

eter values that we found to be the most cost-effective: (a) recommendation algorithm:

Google’s auto-completion; (b) recommendation tree depth: 3; (c) depth weighting func-

tion: exponential decay; (d) unigram model; (e) used only the most recent query; (f) α in

HybridCompletion: 0.5. Table 6.1 summarizes the most cost-effective parameters.

Recommendation algorithm Google’s auto-completions

Recommendation tree depth 3

Depth weighting function exponential decay

n-gram length 1

Context length 1

α used by HybridCompletion 0.5

Table 6.1: Most cost parameters-effective parameters of NearestCompletion and Hybrid-
Completion as found in the comparison experiments.

We start with an anecdotal comparison (Table 6.2) of the completions provided by the

three algorithms on some of the above pairs (note: these are real examples taken from

the AOL log). The first two examples demonstrate the effect of context on query auto

completion after the user has typed a single character of her intended query. In these

examples, the user’s intended query and the context are related (in the first example

they are syntactically related and in the second one they are only semantically related).

The NearestCompletion algorithm detects the similarity and thus provides the correct

prediction at one of the top 2 positions. As the intended queries in these cases are not

popular, MostPopularCompletion fails to hit the correct completion even in its top 10

suggestions. The utter failure of MostPopularCompletion has only a minor effect on

HybridCompletion, which suggests the correct completion at one of its top 5 positions.

The third example exhibits the opposite scenario: the context is irrelevant to the

user’s intended query and the intended query is popular. Consequently, MostPopu-

larCompletion hits the correct query at the top position, while NearestCompletion com-

pletely fails. This time HybridCompletion benefits from the success of MostPopular-

Completion and hits the correct completion also at its top spot.

Figure 6.3 provides a comparison of weighted MRR of the three algorithms on the

7,311 (query, context) pairs. We validated that the results are all statistically significant.

44 Chapter 6. Empirical Study

C
o

n
tex

t
Q

u
ery

M
o

stP
o

p
u

larC
o

m
p

letio
n

N
earestC

o
m

p
letio

n
H

y
b

rid
C

o
m

p
letio

n

fren
ch

fl
ag

italian
fl

ag
in

tern
et

ita
lia

n
fl

a
g

in
tern

et
im

h
elp

itu
n

es
an

d
fren

ch
ita

lia
n

fl
a
g

irs
irelan

d
itu

n
es

an
d

fren
ch

ik
ea

italy
im

h
elp

in
tern

et
ex

p
lo

rer
irealan

d
irs

n
ep

tu
n

e
u

ran
u

s
u

p
s

u
ra

n
u

s
u

ra
n

u
s

u
sp

s
u

ran
as

u
ran

as
u

n
ited

airlin
es

u
n

iv
ersity

u
p

s
u

sb
an

k
u

n
iv

ersity
o

f
ch

icag
o

u
n

ited
airlin

es
u

sed
cars

u
ltraso

u
n

d
u

sp
s

im
p

ro
v

in
g

acer
lap

to
p

b
attery

b
an

k
o

f
am

erica
b

a
n

k
o

f
a
m

e
rica

b
attery

p
o

w
ered

rid
e

o
n

s
b

a
n

k
o

f
a
m

e
rica

b
an

k
o

fam
erica

b
attery

p
lu

s
ch

arlo
tte

n
c

b
est

b
u

y
b

est
b

u
y

b
attery

d
ied

w
h

ile
d

riv
in

g
b

attery
p

o
w

ered
rid

e
o

n
s

b
ed

b
ath

an
d

b
ey

o
n

d
b

est
b

u
y

b
an

k
o

fam
erica

b
illin

g
b

attery
rep

lacem
en

t
fo

r
p

alm
tu

n
g

sten
c

b
attery

d
ied

w
h

ile
d

riv
in

g

T
ab

le
6.2:

T
h

e
to

p
5

co
m

p
letio

n
s

p
ro

v
id

ed
b

y
th

e
3

alg
o

rith
m

s
o

n
(q

u
ery,co

n
tex

t)
p

airs
tak

en
fro

m
th

e
A

O
L

lo
g

.
In

th
e

fi
rst

tw
o

ex
am

p
les

th
e

co
n

tex
t

an
d

th
e

q
u

ery
are

related
,w

h
ile

in
th

e
last

o
n

e
th

ey
are

n
o

t.

6.4. Comparison Experiments 45

It is very clear that HybridCompletion dominates both NearestCompletion and Most-

PopularCompletion. For example, HybridCompletion’s wMRR is 0.246 compared to

only 0.187 of MostPopularCompletion (an improvement of 31.5%). It is also clear that

the quality of NearestCompletion is inferior to MostPopularCompletion (by 19.8%), so it

cannot be used as is for query auto completion. The graph also distinguishes between

pairs in which the context has a rich representation (i.e., the recommendations for this

context have been scraped from Google) and pairs in which the context has only a thin

representation (based on the context query itself, without the recommendations). Note

that the latter simulates the case the context is long-tail and the search engine has no

recommendations for it. The results indicate that even such long-tail contexts are useful,

and thus HybridCompletion is doing better than MostPopularCompletion.

��� ���� ����
	

	
	�

	
�

	
��

	

	

�

	
�

������������

�
�
�
�

�������

�����������

�� ��!

0.15

0.187

0.246

0.193

0.3

0.138

0.17

0.23
0.243

Figure 6.3: Weighted MRR of the 3 algorithms on 7,311 (query, context) pairs. Results
are for all pairs, for pairs in which the context has a rich representation, and for pairs in
which the context does not have a rich representation.

Figure 6.4 demonstrates that HybridCompletion dominates MostPopularCompletion

not only on average but also with high probability. In this graph we compare the (weighted)

fractions of (query,context) pairs on which the MRR values of one algorithm is higher

46 Chapter 6. Empirical Study

than that of the other algorithm. Since small differences in MRR values are insignificant

(e.g., if one algorithm ranks the intended query at position 9 and the other at position 10,

the algorithms perform essentially the same on this query), we deem the two algorithms

to do equally well on some input pair if the difference in their MRR values on this pair

is at most ǫ. Clearly, the lower the value of ǫ, the tighter is the comparison.

After discarding input pairs on which the MRR of both algorithms was 0, we were

left with 3,894 pairs. Figure 6.4 demonstrates that for a wide range of ǫ values, Hybrid-

Completion is superior to MostPopularCompletion on a larger fraction of input pairs.

���� ���� ���� ���� ���� ���� ����
�

���

���

���

���

���

��	

��

���

�
������������

�
��
�
�
��
�
��
��
��
��
�
��
��

��
��

������ !!�

 ���"�
����#�� !!����������

$%&���#�� !!����������

Figure 6.4: Weighted fraction of (query,context) pairs where MostPopularCompletion’s
MRR value is higher than that of HybridCompletion in at least an epsilon and vice versa.

We drilled down the results in order to understand the relative strengths and weak-

nesses of the three algorithms on different inputs. To this end, we selected a random

sample of 198 (query, context) pairs from the set of 7,311 pairs, and manually tagged each

of them as related (i.e., the query is related to the context; 60% of the pairs) and unrelated

(40% of the pairs). Table 6.3 compares the quality of the three algorithms separately on

the related pairs and on the unrelated pairs. The results indicate that when the intended

6.4. Comparison Experiments 47

query is related to the context, NearestCompletion is very successful, achieving wMRR

that is 48% higher relative to MostPopularCompletion. HybridCompletion is even bet-

ter because it takes both the context and the popularity into account. On the other hand,

when the query and context are unrelated, NearestCompletion is essentially useless. Hy-

bridCompletion is even better than NearestCompletion for related pairs, while its quality

for unrelated pairs is moderately lower (in 20.3%) than that of MostPopularCompletion.

MostPopular Nearest Hybrid

Related context 0.163 0.242 0.280

Unrelated context 0.227 0 0.181

Table 6.3: Weighted MRR of the three algorithms, broken down by whether the intended
query and the context are related or not.

Next, we broke down the 7,311 sample pairs into buckets based on the frequency of

the intended query in the query log. The buckets correspond to exponentially increasing

frequency ranges. Figure 6.5 plots the wMRR of each algorithm in each of the buckets.

As expected, MostPopularCompletion is very successful at predicting popular queries.

It supersedes NearestCompletion for such queries, because its success is independent of

whether the context is related to the intended query or not. On the other hand, when

the intended query is long-tail (low popularity), NearestCompletion manages to use

the context to achieve a relatively high prediction quality, while MostPopularComple-

tion exhibits very poor quality. Note that HybridCompletion essentially takes the upper

envelope of the two algorithms, and manages to achieve almost as high quality in all

popularity ranges.

One peculiar artifact exhibited in this experiment is that the quality of NearestCom-

pletion slightly deteriorates for popular queries (whose frequency in the log is above

10,000). We analyzed these queries and found that the fraction of unrelated contexts

such queries have (58%) is much higher than the fraction of unrelated contexts for low

popularity queries (only 36.5%). This explains the lower quality of NearestCompletion

for such queries.

48 Chapter 6. Empirical Study

��
�

��
�

��
�

��
�

��
�

�

���

���

���

��	

�

��
�����

�
�

�
�

�������

������

�������� ��

Figure 6.5: Weighted MRR of the 3 algorithms as a function of the frequency of the in-
tended query in the query log (log-log scale).

6.5 Scalability Experiments

Our baseline query database for comparing NearestCompletion, MostPopularComple-

tion and HybridCompletion consisted of 55,422 rich queries. In practice, the query

database is expected to be much larger. When the query database size increases, there

are more query candidates to choose a completion from, which makes the prediction task

even more challenging. Therefore, we were interested to measure the scalability of our

algorithm as a function of the query database size.

We created a larger rich query database by scraping additional Google Auto-Completions,

and came up with 273,127 rich queries. We then compared the wMRR of the three algo-

rithms over the larger queries database as demonstrated in Figure 6.6. Note that we used

the same comparison method that we described in the previous section. We observed

that the relative improvement of HybridCompletion over MostPopularCompletion in-

creases when the query database size increases, and is 45.6 % compared to 31.5 % relative

improvement in the 55,422 query database. Figure 6.7 is a side by side comparison of the

6.5. Scalability Experiments 49

two database size experiments for all query pairs.

��� ���� ����
	

	
	�

	
�

	
��

	

	

�

������������

�
�
�
�

�������

�����������

�����

0.122

0.106

0.154

0.11

0.135

0.166

0.129

0.09

0.147

Figure 6.6: Weighted MRR of the 3 algorithms on 273,127 (query, context) pairs. Results
are for all pairs, for pairs in which the context has a rich representation, and for pairs in
which the context does not have a rich representation.

It appears that the quality of both MostPopularCompletion and NearestCompletion

(and thus of HybridCompletion) degrades when the rich query database size increases.

We measured the relative quality degradation of the two algorithms and observed that

MostPopularCompletion’s quality degrades more significantly than that of NearestCom-

pletion: NearestCompletion’s wMRR decreases to 0.12, i.e. it relatively degrades in 20 %,

while MostPopularCompletion’s wMRR decreases to 0.1 and thus degrades in 46.5 %.

Another interesting outcome we observed is that in the 273,127 query database exper-

iment, NearestCompletion’s wMRR is higher than that of MostPopularCompletion. Re-

call that in the 55,422 query database experiment, MostPopularCompletion dominated

NearestCompletion.

All the above hints that in terms of quality, NearestCompletion scales better than

MostPopularCompletion does, when the size of the query database increases.

As in the smaller query database experiment, we created a graph of the wMRR as

50 Chapter 6. Empirical Study

������ �������
�

�	��

�	�

�	��

�	�

�	��

�	�

��
������
����������
������
�������������
������
�����

!
"

#
#

��
��

��
�
�

�

�

�

$
��
��

"���%������

&�����
0.122

0.106

0.154

0.246

0.187

0.15

Figure 6.7: Weighted MRR of the 3 algorithms on a database consisting of 7,311 (query,
context) pairs vs. a database consisting of 273,127 (query, context) pairs.

a function of the intended query frequency. As shown in Figure 6.8, the overall behav-

ior pattern of the three algorithms is similar to what we observed in the smaller query

database.

6.6 Parameter Tuning Experiments

We conducted a set of experiments in which we examined the effect of the different pa-

rameters of our algorithms on their quality. Figure 6.9 shows the influence of the depth

of the query recommendation tree used in the construction of the rich query representa-

tion on the quality of NearestCompletion. We examined depths 0 to 3. As expected, the

quality of NearestCompletion increases, as the depth increases, since the vocabulary of

the rich representation is richer. Note that the returns are starting to diminish at depth

3. While we could not run the experiment with larger depths, due to Google’s scraping

limitations, we expect this trend to continue as the depth increases. Thus, a recommen-

dation tree of depth 2 or 3 seems to be the most cost-effective for this application.

6.6. Parameter Tuning Experiments 51

��
�

��
�

��
�

��
�

��
�

�

���

���

���

��	

�

��
�����

�
�

�
� �������

������

�������� ��

Figure 6.8: Larger (273,127) database experiment. Weighted MRR of the 3 algorithms as
a function of the frequency of the intended query in the query log (log-log scale)

Next, we measured the effect of the context length on the quality of NearestComple-

tion. Our experiments (see Table 6.4) demonstrate that increasing the number of recent

queries being taken into account slightly improves the quality of the algorithm, as the

vocabulary that describes the context is enriched. The effect is not as significant as the

recommendation tree depth, though.

Context length 1 2 3

wMRR 0.139 0.154 0.164

Table 6.4: Weighted MRR of NearestCompletion as a function of the context length. Re-
sults are for 2,374 (query, context) pairs in which the context was of length at least 3.

Table 6.5 shows the dependence of NearestCompletion’s quality on the query rec-

ommendation algorithm used to generate the recommendation trees. We compared two

algorithms: Google’s query auto-completions and Google’s related search. The results

demonstrate that the rich representations generated from Google’s related searches are

more effective (quality improves in 12.4%). Nevertheless, in most of our experiments

52 Chapter 6. Empirical Study

��� ���� ����
	

	
	�

	
�

	
��

	

	

�

	
�

������������

�
�
�
�

�����	

������

�����

������

Figure 6.9: Weighted MRR of NearestCompletion as a function of the recommendation
tree depth. Results are for all sample (query, context) pairs, for the ones in which the
context has a rich representation, and for the ones in which the context does not have a
rich representation.

we opted to use Google’s query auto completions, because the difference is not huge

and since they are much easier to scrape (the query latency is lower and the rate lim-

its posed by Google are higher). We thus conclude that the auto completions are more

cost-effective for this purpose.

Auto-completions Related searches

wMRR 0.177 0.199

Table 6.5: Weighted MRR of NearestCompletion using two different query recommen-
dation algorithms (by Google) for generating recommendation trees of depth 2. Results
are only for (query, context) pairs in which the context has a rich representation.

The parameter α in HybridCompletion controls the balance between NearestCom-

pletion and MostPopularCompletion. Recall that for α = 1 HybridCompletion is the

same as NearestCompletion and for α = 0 it is the same as MostPopularCompletion.

Figure 6.10 analyzes the effect of α on the quality of the algorithm. As noted above,

6.6. Parameter Tuning Experiments 53

MostPopularCompletion is better than NearestCompletion when the intended query is

popular and NearestCompletion is better when the context query is related to the in-

tended query. The results show that α = 0.5 is the best choice in aggregate.

��
�

��
�

��
�

��
�

��
�

�

���

���

���

��	

�

��
�����

�
�
�
�

�

����

���

����

�

Figure 6.10: Weighted MRR of HybridCompletion as a function of α (log-log scale).

We measured the influence of other parameters of the algorithm, like the choice of

the depth weighting function, the choice of the context weighting function and the N-

grams maximum length. We have not found significant differences in quality among the

different alternatives.

54 Chapter 6. Empirical Study

Chapter 7

Discussion and Conclusions

In this work we proposed the first context-sensitive algorithm for query auto-completion.

The algorithm, NearestCompletion, suggests to the user completions of her input pre-

fix that are most similar to the recent queries the user has just entered. We show that

when the input prefix is short (1 character) and the context is relevant to the user’s in-

tended query, then the weighted MRR of NearestCompletion is 48% higher than that of

the standard MostPopularCompletion algorithm. On the other hand, when the context

is irrelevant, NearestCompletion is useless. We then propose HybridCompletion, which

is a convex combination of NearestCompletion and MostPopularCompletion. Hybrid-

Completion is shown to be at least as good as NearestCompletion when the context is

relevant and almost as good as MostPopularCompletion when the context is irrelevant.

NearestCompletion computes the similarity between queries as the cosine similarity

between their rich representations. To produce rich query representation we introduce

a new query expansion technique, based on traversal of the query recommendation tree

rooted at the query. This technique may be of independent interest for other applications

of query expansion.

There are a number of possible interesting directions for further development of our

techniques. (a) The choice of the optimal α value of HybridCompletion may be done

adaptively. An algorithm which learns an optimal α as a function of the context features

is likely to improve the quality of the combination. (b) Predicting the first query in a

56 Chapter 7. Discussion and Conclusions

session still remains an open problem. Here one may need to rely on other contextual

signals, like the user’s recently visited page or the user’s long-term search history. (c)

We introduce a novel method for query expansion based on the query recommendation

tree. It will be of interest to compare between the quality of our suggested technique and

the quality of standard query expansion techniques. Such a comparison may be done

in the scope of context-sensitive query auto-completion, as well as in other relevant IR

tasks such as document search.

Bibliography 57

Bibliography

[1] M. Arias, J. M. Cantera, J. Vegas, P. de la Fuente, J. C. Alonso, G. G. Bernardo, C. Lla-

mas, and Á. Zubizarreta. Context-based personalization for mobile web search. In

PersDB, pages 33–39, 2008.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Improving search engines by query

clustering. J. Am. Soc. Inf. Sci. Technol., 58(12):1793–1804, 2007.

[3] Ricardo A. Baeza-Yates. Graphs from search engine queries. In SOFSEM (1), pages

1–8, 2007.

[4] Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcelo Mendoza. Improving

search engines by query clustering. JASIST, 58(12):1793–1804, 2007.

[5] H. Bast, D. Majumdar, and I. Weber. Efficient interactive query expansion with

complete search. In CIKM, pages 857–860, 2007.

[6] H. Bast and I. Weber. Type less, find more: fast autocompletion search with a suc-

cinct index. In SIGIR, pages 364–371, 2006.

[7] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query

log. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 407–416, 2000.

[8] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. Query suggestions in the

absence of query logs. In SIGIR, pages 795–804, 2011.

[9] P. Boldi, F. Bonchi, C. Castillo, D. Donato, and S. Vigna. Query suggestions using

query-flow graphs. In WSCD, pages 56–63, 2009.

[10] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis,

and Sebastiano Vigna. The query-flow graph: model and applications. In CIKM,

pages 609–618, 2008.

58 Chapter 7. Discussion and Conclusions

[11] A. Z. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler, L. Riedel, and

J. Yuan. Online expansion of rare queries for sponsored search. In WWW, pages

511–520, 2009.

[12] H. Cao, D. Jiang, J. Pei, E. Chen, and H. Li. Towards context-aware search by learn-

ing a very large variable length hidden markov model from search logs. In WWW,

pages 191–200, 2009.

[13] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query

suggestion by mining click-through and session data. In KDD, pages 875–883, 2008.

[14] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation and analy-

sis of personalized search strategies. In WWW, pages 581–590, 2007.

[15] Doug Downey, Susan T. Dumais, and Eric Horvitz. Models of searching and brows-

ing: Languages, studies, and application. In IJCAI, pages 2740–2747, 2007.

[16] James Allan et al. Challenges in information retrieval and language modeling: re-

port of a workshop held at the center for intelligent information retrieval, university

of massachusetts amherst, september 2002. SIGIR Forum, 37(1):31–47, 2003.

[17] Henry Allen Feild, James Allan, and Rosie Jones. Predicting searcher frustration. In

SIGIR, pages 34–41, 2010.

[18] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Rup-

pin. Placing search in context: the concept revisited. ACM Trans. Inf. Syst., 20(1):116–

131, 2002.

[19] B. M. Fonseca, P. B. Golgher, E. S. de Moura, and N. Ziviani. Using association rules

to discover search engines related queries. In LA-WEB, page 66, 2003.

[20] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In IJCAI, pages 1606–1611, 2007.

[21] Ayse Göker and Daqing He. Analysing web search logs to determine session bound-

aries for user-oriented learning. In AH, pages 319–322, 2000.

Bibliography 59

[22] Ahmed Hassan, Rosie Jones, and Kristina Lisa Klinkner. Beyond dcg: user behavior

as a predictor of a successful search. In WSDM, pages 221–230, 2010.

[23] Daqing He, Ayse Göker, and David J. Harper. Combining evidence for automatic

web session identification. Inf. Process. Manage., 38(5):727–742, 2002.

[24] Q. He, D. Jiang, Z. Liao, S. C. H. Hoi, K. Chang, E. Lim, and H. Li. Web query

recommendation via sequential query prediction. In ICDE, pages 1443–1454, 2009.

[25] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information retrieval: a

study of user queries on the web. SIGIR Forum, 32(1):5–17, 1998.

[26] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW, pages

271–279, 2003.

[27] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In WWW,

pages 371–380, 2009.

[28] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. CoRR, cmp-lg/9709008, 1997.

[29] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In

WWW, pages 387–396, 2006.

[30] Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout: automatic

hierarchical segmentation of search topics in query logs. In CIKM, pages 699–708,

2008.

[31] Alexander Kotov, Paul N. Bennett, Ryen W. White, Susan T. Dumais, and Jaime

Teevan. Modeling and analysis of cross-session search tasks. In SIGIR, pages 5–14,

2011.

[32] Alexander Kotov, Paul N. Bennett, Ryen W. White, Susan T. Dumais, and Jaime

Teevan. Modeling and analysis of cross-session search tasks. In SIGIR, pages 5–14,

2011.

60 Chapter 7. Discussion and Conclusions

[33] R. Kraft, C. C. Chang, F. Maghoul, and R. Kumar. Searching with context. In WWW,

pages 477–486, 2006.

[34] Robert Krovetz and W. Bruce Croft. Lexical ambiguity and information retrieval.

ACM Trans. Inf. Syst., 10(2):115–141, 1992.

[35] Tessa Lau and Eric Horvitz. Patterns of search: analyzing and modeling web query

refinement. In Proceedings of the seventh international conference on User modeling,

pages 119–128, 1999.

[36] Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification of user goals

in web search. In WWW, pages 391–400, 2005.

[37] Fang Liu, Clement T. Yu, and Weiyi Meng. Personalized web search by mapping

user queries to categories. In CIKM, pages 558–565, 2002.

[38] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and

Gabriele Tolomei. Identifying task-based sessions in search engine query logs. In

WSDM, pages 277–286, 2011.

[39] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

[40] Nicolaas Matthijs and Filip Radlinski. Personalizing web search using long term

browsing history. In WSDM, pages 25–34, 2011.

[41] Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. In CIKM,

pages 469–478, 2008.

[42] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In 1st InfoScale, 2006.

[43] James E. Pitkow, Hinrich Schütze, Todd A. Cass, Robert Cooley, Don Turnbull,

Andy Edmonds, Eytan Adar, and Thomas M. Breuel. Personalized search. Com-

mun. ACM, 45(9):50–55, 2002.

[44] Benjamin Piwowarski, Georges Dupret, and Rosie Jones. Mining user web search

activity with layered bayesian networks or how to capture a click in its context. In

WSDM, pages 162–171, 2009.

Bibliography 61

[45] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A

word at a time: computing word relatedness using temporal semantic analysis. In

WWW, pages 337–346, 2011.

[46] Filip Radlinski and Thorsten Joachims. Query chains: Learning to rank from im-

plicit feedback. CoRR, abs/cs/0605035, 2006.

[47] Joseph Reisinger and Raymond J. Mooney. Multi-prototype vector-space models of

word meaning. In HLT-NAACL, pages 109–117, 2010.

[48] Philip Resnik. Using information content to evaluate semantic similarity in a tax-

onomy. In IJCAI, pages 448–453, 1995.

[49] J. J. Rocchio. Relevance Feedback in Information Retrieval. Prentice Hall, 1971.

[50] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustering query refinements by

user intent. In WWW, pages 841–850, 2010.

[51] Christian Sengstock and Michael Gertz. Conquer: a system for efficient context-

aware query suggestions. In WWW (Companion Volume), pages 265–268, 2011.

[52] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information re-

trieval using implicit feedback. In SIGIR, pages 43–50, 2005.

[53] Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing semantic relat-

edness using wikipedia. In AAAI. AAAI Press, 2006.

[54] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. Information re-

retrieval: repeat queries in yahoo’s logs. In SIGIR, pages 151–158, 2007.

[55] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search via auto-

mated analysis of interests and activities. In SIGIR, pages 449–456, 2005.

[56] S. K. Tyler and J. Teevan. Large scale query log analysis of re-finding. In Proceedings

of the third ACM international conference on Web search and data mining, pages 191–200,

2010.

62 Chapter 7. Discussion and Conclusions

[57] Sarah K. Tyler and Jaime Teevan. Large scale query log analysis of re-finding. In

WSDM, pages 191–200, 2010.

[58] R. W. White and G. Marchionini. Examining the effectiveness of real-time query

expansion. Inf. Process. Manage., 43(3):685–704, 2007.

[59] Ryen W. White, Paul N. Bennett, and Susan T. Dumais. Predicting short-term inter-

ests using activity-based search context. In CIKM, pages 1009–1018, 2010.

[60] Eric Yeh, Daniel Ramage, Christopher D. Manning, Eneko Agirre, and Aitor Soroa.

Wikiwalk: Random walks on wikipedia for semantic relatedness. In Graph-based

Methods for Natural Language Processing, pages 41–49, 2009.

[61] Z. Zhang and O. Nasraoui. Mining search engine query logs for query recommen-

dation. In WWW, pages 1039–1040, 2006.

Hebrew Section

�הנוכחי �המשתמש�שביצע�הקודמות�השאילתות�הינו�בו�מתרכזים�שאנו�ההקשר.

�לאחרונה)�בודד�תו�באורך�(מאוד�קצרה�הינה�הקלט�תחילית�רשכאש�מראים�אנו.

�הנוכחי�לחיפוש�רלבנטי�וההקשר ��NearestCompletionשל�הממושקל�MRR-ה�אזי,

��MostPopularCompletionשל�מזה�48%-�ב�גבוה �מאידך. ,�רלבנטי�אינו�ההקשר�כאשר,

NearestCompletionתועלת�חסר�הינו�� �בשם�אלגוריתם�מציעים�אנו.

HybridCompletionהאחרים�האלגוריתמים�שני�של�שילוב�שהינו�� �כי�מראים�אנו.

HybridCompletionכמו�לפחות�טוב�הינו��NearestCompletionוטוב,�רלבנטי�כשההקשר��

��.רלבנטי�אינו�כשההקשר��MostPopularCompletionכמו�כמעט

��

�שאילתות�הרחבתשל��ה�חדשהטכניק�זו�בעבודה�מציעים�אנו,�כמו�כן �למדידת,

�את�מכיל�ששורשו�המלצות�עץ�על�מתבססת�המוצעת�ההרחבה.�שאילתות�בין�דמיון

�המבוקשת�השאילתא �לאפליקציות�רלבנטית�להיות�עשויה�המתוארת�הטכניקה.

��.שאילתות�הרחבת�של�אחרות

��

��.ולהמשך�להרחבה�אפשריים�כיוונים�מספר�ישנם

�ותקודמ�שאילתות�קיימות�לא�כאשר�המשתמש�של�הראשונה�השאילתא�חיזוי��.�1

�לאחרונה�שנשאלו �פתוחה�בעיה�נותרה, �זה�במקרה. �מקורות�על�להסתמך�יש,

�הדפים�או,�המשתמש�של�הטווח�ארוכת�החיפוש�היסטוריית�כגון�אחרים�הקשר

��.לאחרונה�ביקר�אותם

�כגון�אחרות�חיפוש�באפליקציות�המלצות�מבוססת�שאילתות�בהרחבת�שימוש��.�2

��.�מסמכים�איחזור

3.� �בין�לשילוב�המשמשים,��HybridCompletionשל�טימלייםהאופ�הפרמטרים�לימוד�

�MostPopularCompletion -ו��NearestCompletionשל�התוצאות �לשיטה�בניגוד.

�הקלטים�לכל�גלובליים�פרמטרים�לומדים�אנו�בה�המוצעת �ללמוד�מעניין�היה,

�הנתון�ההקשר�לתכונות�המותאמים�אופטימליים�פרמטרים �כאלה�פרמטרים.

��.השילוב�איכות�את�לשפר�עשויים

��

��

��

��

��

��

��

��

��

�תקציר �V

��ותוצאות�ניסויים

��

�הינה�הראשונה�המטרה:�מטרות�שתי�שלהם�ניסויים�קבוצת�ערכנו�המחקר�במסגרת

�שהצענו�השאילתות�המלצת�אלגוריתמי�בין�השוואה�ביצוע ,NearestCompletionו�-

HybridCompletion� ��MostPopularCompletionהבסיס�לאלגוריתם, �השניה�המטרה.

��.התוצאות�איכות�על�השונים�הפרמטרים�של�ההשפעה�בדיקת�הינה

��

�המלצת�לאלגוריתמי�אוטומטית�הערכה�מתודולוגית�במחקרנו�מציעים�אנו

�המוצעת�המתודולוגיה.�משתמשים�של�נתון�שאילתות�יומן�על�המבוססת,�שאילתות

��:כדלקמן�הינה

��

�חלקים�לשני�השאילתות�יומן�את�חילקנו ��80%הינו�הראשון�החלק�של�גודלו.

�האימון�כקבוצת�לשמש�ותפקידו�מהיומן �מהיומן��20%הינו�השני�החלק�של�גודלו.

�הבדיקה�כקבוצת�לשמש�ותפקידו �של�מאגר�ליצירת�לנו�שימשה�האימון�וצתקב.

�להמלצה�מועמדות�שאילתות �וקטור�של�עשיר�ייצוג�יצרנו�במאגר�שאילתא�לכל.

�גבוה�במימד �זו�בעבודה�שהצענו�ת�שאילתאהרחב�שיטת�על�המבוסס, �הייצוג�את.

��.��Google Suggest–�גוגל�של)�הקשר�נטולת�(השאילתות�המלצת�שרות�בסיס�על�יצרנו

��

�של�החיזוי�איכות�את�לשערך�נדרשנו�שאילתות�המלצת�אלגוריתם�להעריך�כדי

�השאילתא�תחילית�בהנתן�המשתמש�שאילתת �ביכולת�תלויה�החיזוי�איכות.

�ששאילתת�ככל.�האלגוריתם�י"ע�הניתן�בדרוג�וכן,�השאילתא�את�לחזות�האלגוריתם

�ההמלצות�ברשימת�יותר�גבוה�מדורגת�המשתמש �החיזוי�איכות�עולה�כך, �לצורך.

�מהיומן�עוקבות�שאילתות�של�זוגות�קבוצת�דגמנו�הניסויים �אותו�י"ע�שנשאלו,

).�בתחום�במחקר�המקובל�דקות��30של�זמן�הפרש�(יחסית�קצר�זמן�בהפרש�משתמש

�בדיקה�כיחידת�התייחסנו�שאילתות�זוג�לכל �משמשת�הראשונה�השאילתא�כאשר,

�הקשר�כשאילתת �התו�בהנתן�ניההש�השאילתא�את�לחזות�הנבדק�האלגוריתם�על.

�הקלט�כתחילית�שלה�הראשון �מדד�של�בואריאציה�להשתמש�במחקר�מציעים�אנו.

��MRR-ה �עצם�לאחזר�אלגוריתם�יכולת�להערכת�מקובל�מדד�הינו�MRR-ה�מדד.

��.החיבור�בגוף�מופיעים�ותוצאותיהם�הניסויים�פרטי�.גבוה�בדרוג�מבוקש
��

��

��מסקנות

��

.�הקשר�תלוי�שהינו�שאילתות�המלצתל�הראשון�האלגוריתם�את�הצענו�זו�בעבודה

�זה�שהמשתמש�השאילתא�תחילית�את�כקלט�מקבל,�NearestCompletion,�האלגוריתם

�החיפוש�מתבצע�שבו�להקשר�ביותר�הדומות�שאילתות�למשתמש�ומציע,�מקליד�עתה

��

��

��

��

��

IV� תקציר�

�שאילתות�של �נטול�(שאילתות�להמלצת�אלגוריתם�של�איטרטיבית�הפעלה�י"ע,

�הקשר �שחורה�כקופסה�המשמש) �הבא�באופן�נבנה�העץ. �את�מכיל�העץ�שורש:

�הנתונה�השאילתא �של�ישירות�המלצות�מכילים�השורש�של�הישירים�הבנים;

�השאילתא �המלצות�של�המלצות�מכילה�הבאה�הדרגה; �הלאה�וכן; �הבניה�תהליך.

�רצוי�לגובה�עד�נמשך �לאלגוריתם�נתון�פרמטר�שהינו, �שנוצר�העץ�כי�לראות�ניתן.

�המקורית�אהשאילת�מילות�על�נוספות�מילים�מכיל �להרחבת�בסיס�המהוות,

�השאילתא �סמנטית�קשורות�תהיינה�שנוספו�שהמילים�הינה�שלנו�ההיפותזה.

�המקורית�לשאילתא �גבוהה�בסבירות�שהינן�בשאילתות�שמקורן�כיון, �ניסוחים,

,�ממושקלות�מילים�של�וקטורי�ייצוג�גוזרים�אנו�שנוצר�מהעץ.�זו�לשאילתא�אפשריים

�רחבתהמו�השאילתא�את�המייצג �המילים�למישקול�שיטה�מציעים�אנו. �הלוקחת,

�בעץ�המילה�מופעי�כמות�את�בחשבון �מילה�מופיעה�בה�בעץ�הרמה�את�וכן, �ככל.

.�עולה�לשאילתא�סמנטית�קשורה�שהיא�הסבירות,�יותר�רבות�פעמים�מופיעה�שמילה

�בנוסף �הנתונה�לשאילתא�יותר�ישיר�קשר�על�מעידה�בעץ�יותר�גבוהה�רמה, �ולכן,

��.�יותר�גדול�להמשק

��

,�הנוכחית�לשאילתא�רלבנטי�ההקשר�כאשר�כי�מתברר�שערכנו�אמפירי�מניתוח

�של�מזה�יחסי�באופן�48%-ב�יותר�טוב��NearestCompletionשל�החיזוי

MostPopularCompletionשאילתות�אותן�עבור�� �אולם. �רלבנטי�אינו�ההקשר�כאשר,

�הנוכחית�לשאילתא ,NearsetCompletionבחיזוי�רילגמ�נכשל�� �וכך. �כלל�עבור,

�)להקשר�רלבנטיות�ושאינן�להקשר�רלבנטית�(השאילתות �של�החיזוי�יכולת,

NearestCompltionשל�מזו�19%-�ב�נמוכה��MostPopularCompletion� �על�להתגבר�כדי.

�המתוארת�התופעה �שילוב�שהינו��HybridCompletionבשם�אלגוריתם�מציעים�אנו,

�האחרים�האלגוריתמים�שני�של �רשימה�כפלט�נותן�האלגוריתמים�משני�אחד�כל.

�ביותר�הטובות�ההשלמות��kשל�מדורגת �ידי�על�הרשימות�שתי�את�מאחדים�אנו.

�פי�על�הסטנדרטי�הציון�של�קונווקסית�קומבינציה�שהינו�סופי�ציון�של�חישוב

�להקשר�דמיון�פי�על�הסטנדרטי�והציון�פופולריות �לפי�מדורגות�הסופיות�ההמלצות.

�הסופי�הציון -מ�יותר�טוב��HybridCompletionכי�מראים�אנו�שערכנו�במדידות.

NearsestCompletionמ�וכן�-MostPopularCompletion� �בפרט. �יכולת�את�משפר�הוא,

��.31.5%-�ב��MostPopularCompletionשל�החיזוי

��

�כפונקציית�המקובל�הזוית�קוסינוס�דמיון�על�מתבסס�שלנו�שהאלגוריתם�מכיון

�מסמכים�בין�דמיון �חיפוש�בארכיטקטורת�שימוש�ידי�על�ביעילות�אותו�לממש�ניתן,

�בזמן�נעשית�שאילתות�שהשלמת�מכיון,�לאלגוריתם�חיונית�היא�זו�תכונה.�סטנדרטית

��.השאילתא�את�מקליד�שהמשתמש�כדי�תוך,�אמת

��

��

��

��

��

��

��

�תקציר �III

�ביותר�המאתגר�התרחיש�עם�להתמודד�הינה�הזו�העבודה�מטרת �קלט�בהינתן:

��.גבוהה�בהסתברות�המשתמש�של�השאילתא�את�לחזות�יש,�קצרה�תחילית�של

��

�המשתמש�כוונת�על�מידע�לנו�אין�קצר�קלט�שעבור�וןומכי �לקחת�מציעים�אנו,

�הקשר"ה�את�בחשבון �החיפוש�נעשה�בו�המשתמש�של" �צרכי�על�לרמוז�העשוי,

�שלו�המידע �הקשר�תלויית�שאילתות�המלצת�"זו�לגישה�קוראים�אנו. �יכול�הקשר".

�המשתמש�של�החיפוש�סטורייתיה�להיות �שלו�הגלישה�היסטוריית, ,�עיניין�תחומי,

�האישי�במחשבו�חסןהמאו�מידע �ועוד�ששלח�אלקטרוני�דואר, �אנו�זו�בעבודה.

�להקשר�כמקור�המשתמש�שביצע�האחרונות�בשאילתות�מתמקדים �לדוגמה. �אם,

,�"פ�"התו�את�מקליד�הוא�וכעת"�מהיר�מזון�"היתה�המשתמש�של�הקודמת�השאילתא

�פיצריה�"השאילתא�את�לו�נציע �הקודמת�לשאילתא�קשורה�שהיא�מכיון" �הסיבות.

�(הן�קודמות�בשאילתות�מתמקדים�שאנו�לכך :1�)��2(החיפוש�למנוע�נגישות�הן)

�שערכנו�בבדיקות �קצר�בזמן�אחרת�שאילתא�קדמה�מהחיפושים�49%-�ל�כי�מצאנו,

�דקות�30-�מ�פחות(�כלומר). �שאילתות�של�הקשר�ישנו�חיפושים�של�נכבדה�לכמות,

��.לגישתנו�המתאים�קודמות

��

�השאילתא�חיזוי�לצורך�קודמות�בשאילתות�לשימוש�חדשה�שיטה�מציעים�אנו

�המשתמש�של�ההקשר�כאשר�כי�ההנחה�על�מתבססת�שיטתנו.�המשתמש�של�הבאה

�דומה�להקליד�עומד�שהוא�שהשאילתא�גבוהה�סבירות�ישנה,�הנוכחי�לחיפוש�רלבנטי

�ההקשר�לשאילתות �לדוגמה�(סינטקטי�להיות�יכול�הדמיון. �מהיר�מזון>�-�מהיר�מזון,

�מהמקרים�56%-ב,�שערכנו�בדיקות�לפי).�פיצריה>�-��מהיר�מזון�(בלבד�מנטיס�או,�)וזול

�לה�שקדמה�לשאילתא�קשורה�עוקבת�שאילתא�בהם �שאילתא�המשתמש�ינסח,

��.הקודמת�לשאילתא�סינטקטית�דומה�שאינה�חדשה

��

�ההקשר�לשאילתת�נוכחית�שאילתא�דמיון�לגבי�הנחתנו�על�בהתבסס �אנו,

�והקשר��xקלט�בהנתן.�הבא�באופן�העובד��NearestCompletionבשם�אלגוריתם�מציעים

y� �y-ל�ביותר�הדומות��xשל�השלמות�למשתמש�יציע�האלגוריתם, �פונקציית�בחירת.

.�דרישות�שתי�לקיים�צריכה�שהיא�מכיון�זאת,�טריויאלית�אינה�שאילתות�בין�הדמיון

�הפונקציה�פי�על�יותר�דומות�שאילתות�ששתי�שככל�היא�ראשונה�דרישה �כך,

�שניה�דרישה.�יותר�גבוה�במידע�צורך�אותו�של�שונים�ניסוחים�להיות�שלהן�סבירותה

��.שהוא�שאילתות�זוג�כל�כקלט�תקבל�דמיוןה�שפונקצית�היא

��

�הרחבת�י"ע�שאילתות�בין�דמיון�למדידת�חדשה�פונקציה�מציעים�אנו�זו�בעבודה

�גבוה�במימד�וקטור�של�עשיר�לייצוג�שאילתא �וקטורים�שני�בהינתן. �ביניהם�מיוןהד,

�הזוית�קוסינוס�מדד�כגון�סטנדרטי�מדד�י"ע�יחושב �הוא�שלנו�בשיטה�החידוש.

�עץ�מייצרים�אנו.�סמנטית�קרובות�אחרות�שאילתות�על�מבוססת�השאילתא�שהרחבת

��

��

��

��

��

II� תקציר�

��

��

��

��

��תקציר
��

��

�חיפוש�מנועי�של�ביותר�הפופולריים�מהשירותים�אחד�הינה�שאילתות�המלצת

�מודרניים �את�יותר�טוב�לנסח�למשתמש�לעזור�היא�שאילתות�המלצת�של�מטרתה.

�במידע�שלו�הצורך �החיפוש�חווית�את�לשפר�ובכך, �מתמקדים�אנו�זו�בעבודה.

�אוטומטי�באופן�שאילתות�בהשלמת �להמלצת�הקיימות�הדרכים�אחת�שהיא,

�שאילתות �ותמיל�את�מקליד�שהמשתמש�בזמן�מתבצעת�שאילתות�השלמת.

.�חלקית�שאילתא�כלומר,�כה�עד�שהוקלדה�השאילתא�תחילית�הינו�הקלט.�השאילתא

�אחת.�שהוקלד�התוים�לרצף�אפשריות�השלמות�של�יחסית�קצרה�רשימה�הינו�הפלט

�שאילתא�השלמת�של�המטרות �של�השאילתא�חיזוי�הינו�,זו�בעבודה�נתמקד�בה,

��.השאילתא�של�המלאה�ההקלדה�את�לו�לחסוך�כדי�המשתמש

��

�הינו�שאילתות�המלצת�של�אלגוריתמים�מאחורי�עומדה�הראשי�עיקרוןה

�ביותר�הפופולריות�השאילתות�את�למשתמש�מציע�החיפוש�מנוע".�ההמונים�חוכמת"

�של)�לוגים�(מיומנים�להפיק�ניתן�זה�מידע.�בעבר�אחרים�משתמשיםשנשאלו�על�ידי�

�מנוע�יציע"�יש�"ליתהתחי�עבור,�לדוגמה.�החיפוש�מנועי�ידי�על�המנוהלים�שאילתות

�גוגל�"החיפוש �ישראכרט�"הפופולריות�השאילתות�את" �"היום�ישראל"-�ו" �בראש,

�המומלצות�השאילתות�רשימת �בשם�פופולריות�מבוסס�לאלגוריתם�נקרא.

MostPopularCompletion.��

��

�שציינו�כפי �מילות�את�מקליד�שהמשתמש�בזמן�מתבצעת�שאילתות�השלמת,

�השאילתא �הראשונים�בשלבים. �קטן�תוים�מספר�הינו�הקלט, �אחד�תו�אף�וייתכן,

�קצרה�תחילית,�בנוסף.�מאוד�גדול�האפשריות�ההמלצות�מרחב,�קצר�קלט�עבור.�בלבד

,�אלה�מסיבות.�המשתמש�כוונת�על�מידע�מספקת�ואינה,�עמומה�הינה�שאילתא�של

�טריויאלית�לא�משימה�הינה�קצרה�תחילית�בהנתן�המשתמש�שאילתת�חיזוי ,�ואכן.

�בודד�תו�הקלדת�אחרי�כי�מצאנו�שביצענו�סוייםבני �המלצת�של�החיזוי�יכולת,

��.נמוכה�הינה�פופולריות�בסיס�על�שאילתות

��

• � �ילהוריתודה �רייךוסט�ואלימלך�שרה, ,� �ו�הדחיפה�את�לי�שנתנועל �הכחאת

�חיזקו,�שתמכו�על�;להתחיל �ובעיקר�;ובהתמדה�במסירות�והאמינו, �שהפנימו�על,

��.ולהשכיל�ללמוד,�יידיעותי�את�ולהעמיק�להרחיב�השאיפה�את�בי

�עלו�,בנדיבות�וברוחב�לב�תמיכתם�על�,קראוס�ולאה�יהושע�,חמותילו�לחמיתודה� •

��.ללימודים�ומשאבים�זמן�הפנותל�לי�שאפשרה,�עת�בכל�העזרה

• � �מתן�,האהובים�יילילדתודה �שרק�והשמחה�האור�את�לי�שנתנו�,ויובל�נועה,

��.לתת�יכולים�ילדים

�לבסוף • �בדבקות�ותמך�,מצב�ובכל�זמן�בכל�לצידי�שהיה�על�,בעלי�לשרגאתודה�,

�בנוסף�.בעצמי�משהאמנתי�יותר�בי�האמונה�עלו�,הדרך�כל�לאורך �על�תודה,

��.עצמו�למחקר�שתרמה�תהטכני�העזרה

��

�לברכה�זכרם�ייסבתותלו�יילסב�זה�מחקר�להקדיש�ברצוני ,�גולדנר�ושמואל�יפה,

�חדשים�דורות�והעמידו,�בשואה�םיהתומשפח�בני�את�שאיבדו�,וסטרייך�וחיים�בלומה

��.הכל�למרות�ישראל�בארץ

��

��

��
��'רקוביץשאול�מ'�ר�זיו�בר�יוסף�ופרופ"דהמחקר�נעשה�בהנחיית�

��

��

���מכון�טכנולוגי�לישראל–�לטכניון�תודתי�נתונה

��על�התמיכה�הכספית�הנדיבה�בהשתלמותי

��

��

��

��

��

��

��

��ודותת
��

��

��;ןיתאמ�אל�–�'מצאתי�ולא�יגעתי'��אדם�לך�יאמר�אם:�יצחק�רבי�אמר"

� ��;ןיתאמ�אל�–�'ומצאתי�יגעתי�לא'�

� ��."ןיתאמ�–'�ומצאתי�יגעתי'�

� �� ��)ו�מגילה�בבלי(�

��

�בלעדיהםשו,�שבדרך�היגיעה�לאורך�בי�שתמכו�האנשים�לכל�לב�במקר�להודות�ברצוני

��.המחקרעבודת��את�משלימה�הייתי�לא

�ובראשונה • �בראש ,� �ההשקעה�על�;המסורה�ההנחיה�על�יוסף-�בר�זיו�ר"לדתודה

�הרבה �הרצינות, �במהלך�שלמדתי�הרבים�הדברים�כל�על�;והעידוד�התמיכה,

�חופש�נתינת�בין�העדין�איזוןה�על�לשמור�היכולת�על�תודה.�המשותפת�העבודה

��.�הכוונה�לבין�מחשבתי

��.�למחקרתרומתו�ועל�המשותפת�ההנחיה�על'�מרקוביץ�שאול'�לפרופ�תודה •

��.המועיל�המשובעל�ו��במחקרההתעניינות�על�קורלנד�אורן�ר"לד�תודה •

��.מועילות�שיחותעל�ו�טובות�מילים�על�בטכניון�יידידי�לכל�תודה •

��

��המלצת�שאילתות�תלוית�הקשר
��

��

���מחקרחיבור�על

��

��

��

��

��תוארהדרישות�לקבלת��הלש�מילוי�חלקי�לשם

��מגיסטר�למדעים�במדעי�המחשב

��

��

��

��

��

��

��

��

��

���קראוסנעמה

��

��

��

���מכון�טכנולוגי�לישראל–הטכניון�הוגש�לסנט�

��

��

�ב"ע�תשאייר �חיפה� ���2012אפריל�

��

